cs231n spring 2017 lecture11 听课笔记

Posted ZonghaoChen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cs231n spring 2017 lecture11 听课笔记相关的知识,希望对你有一定的参考价值。

 

1. Semantic Segmentation

  把每个像素分类到某个语义。

  为了减少运算量,会先降采样再升采样。降采样一般用池化层,升采样有各种“Unpooling”、“Transpose Convolution”(文献中也叫“Upconvolution”之类的其他名字)。

  这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签。

2. Classification + Localizatoin

  一般用同一个网络,一方面得出分类,一方面得出Bounding box的位置和大小。

 

3. Object Detection

  预先设定好要找哪些objects,一旦图片里发现,就框出来。Classification + Localizatoin一般是针对单个物体,而这里是针对多个物体。

  Sliding window:计算量太大,舍弃。

  Region Proposals:先找可能有物体的图片区域,然后一个个处理,在CPU上大概几秒的时间。这种方法在深度学习之前就出来了。

  R-CNN:先找出region proposal,然后把region proposal调整成神经网络需要的大小,然后给神经网络计算,最后通过SVM分类。

      训练很慢(84h),也非常耗内存。预测也很慢(47秒 VGG16)

 

  Fast R-CNN:相比R-CNN快很多,训练(8.75h),预测(计算region proposal花2秒,神经网络预测花0.32秒)。

        训练的时候把下图中的Linear + softmax和Linear加起来得到multi-task loss。

 

 

  Faster R-CNN:用卷积层去预测region proposal。比Fast R-CNN更快,预测耗时0.2秒。

 

  YOLO(Redmon et al., CVPR 2016)/SSD(Liu et al, "Single-Shot MultiBox Detecotr", ECCV 2016):这两种方法没有用region proposal,更快,但是相对不那么准。Faster R-CNN更慢,但是更准。

  Object Detection + Captioning (DenseCap, CVPR 2016)

 

4. Instance Segmentation

  Semantic Segmentation和Object Detection的结合,找出多个物体,并且判断每个像素属于哪个分类。

  Mask R-CNN (He et al., 2017),网络有两个分支,第一个执行Object Detection,第二个执行Semantic Segmentation。这个网络把之前的都融合起来,是集大成者,表现非常非常好。在Object Detection分支加入对人体关节的识别,还能识别人的pose。基于Faster R-CNN,接近real-time。

 

以上是关于cs231n spring 2017 lecture11 听课笔记的主要内容,如果未能解决你的问题,请参考以下文章

cs231n spring 2017 lecture9 听课笔记

cs231n spring 2017 lecture3 听课笔记

cs231n spring 2017 lecture7 听课笔记

cs231n spring 2017 lecture4 听课笔记

cs231n spring 2017 lecture8 听课笔记

cs231n spring 2017 lecture12 听课笔记