Java泛型的设计

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java泛型的设计相关的知识,希望对你有一定的参考价值。

Java泛型的设计
引言
泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用。本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除。

泛型基础
泛型类
我们首先定义一个简单的Box类:
publicclass Box {
private String object;
publicvoid set(Stringobject) { this.object = object;}
public String get() { return object; }
}
这是最常见的做法,这样做的一个坏处是Box里面现在只能装入String类型的元素,今后如果我们需要装入Integer等其他类型的元素,还必须要另外重写一个Box,代码得不到复用,使用泛型可以很好的解决这个问题。
publicclass Box<T> {
// T stands for "Type"
private T t;
publicvoid set(T t) { this.t = t; }
public T get() { return t; }
}
这样我们的 Box 类便可以得到复用,我们可以将T替换成任何我们想要的类型:
Box<Integer> integerBox = newBox<Integer>();
Box<Double> doubleBox = newBox<Double>();
Box<String> stringBox = newBox<String>();
泛型方法
看完了泛型类,接下来我们来了解一下泛型方法。声明一个泛型方法很简单,只要在返回类型前面加上一个类似 <K, V> 的形式就行了:
publicclass Util {
publicstatic <K, V> boolean compare(Pair<K, V> p1, Pair<K,V> p2) {
returnp1.getKey().equals(p2.getKey()) &&
p1.getValue().equals(p2.getValue());
}
}
publicclass Pair<K, V> {
private K key;
private V value;
public Pair(K key, V value) {
this.key = key;
this.value = value;
}
publicvoid setKey(K key) { this.key = key; }
publicvoid setValue(V value){ this.value = value; }
public K getKey() { return key; }
public V getValue() { return value; }
}
我们可以像下面这样去调用泛型方法:
Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<Integer, String>compare(p1, p2);
或者在Java1.7/1.8利用type inference,让Java自动推导出相应的类型参数:
Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);
边界符
现在我们要实现这样一个功能,查找一个泛型数组中大于某个特定元素的个数,我们可以这样实现:
publicstatic <T> int countGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if (e >elem) // compiler error
++count;
return count;
}
但是这样很明显是错误的,因为除了 short,int, double, long, float, byte, char 等原始类型,其他的类并不一定能使用操作符 > ,所以编译器报错,那怎么解决这个问题呢?答案是使用边界符。
publicinterface Comparable<T> {
publicint compareTo(T o);
}
做一个类似于下面这样的声明,这样就等于告诉编译器类型参数 T 代表的都是实现了 Comparable 接口的类,这样等于告诉编译器它们都至少实现了 compareTo 方法。
publicstatic <T extendsComparable<T>> intcountGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if(e.compareTo(elem) > 0)
++count;
return count;
}
通配符
在了解通配符之前,我们首先必须要澄清一个概念,还是借用我们上面定义的Box类,假设我们添加一个这样的方法:
publicvoid boxTest(Box<Number> n) { /* ... */ }
那么现在 Box<Number>n 允许接受什么类型的参数?我们是否能够传入 Box<Integer> 或者 Box<Double> 呢?答案是否定的,虽然Integer和Double是Number的子类,但是在泛型中 Box<Integer> 或者 Box<Double> 与 Box<Number> 之间并没有任何的关系。这一点非常重要,接下来我们通过一个完整的例子来加深一下理解。
首先我们先定义几个简单的类,下面我们将用到它:
class Fruit {}
class Apple extends Fruit {}
class Orange extends Fruit {}

下面这个例子中,我们创建了一个泛型类Reader ,然后在 f1() 中当我们尝试 Fruit f= fruitReader.readExact(apples); 编译器会报错,因为List<Fruit> 与 List<Apple> 之间并没有任何的关系。
publicclass GenericReading {
static List<Apple>apples = Arrays.asList(new Apple());
static List<Fruit>fruit = Arrays.asList(new Fruit());
staticclass Reader<T> {
TreadExact(List<T> list) {
return list.get(0);
}
}
staticvoid f1() {
Reader<Fruit> fruitReader = newReader<Fruit>();
// Errors:List<Fruit> cannot be applied to List<Apple>.
// Fruit f =fruitReader.readExact(apples);
}
publicstaticvoid main(String[] args) {
f1();
}
}
但是按照我们通常的思维习惯,Apple和Fruit之间肯定是存在联系,然而编译器却无法识别,那怎么在泛型代码中解决这个问题呢?我们可以通过使用通配符来解决这个问题:
staticclass CovariantReader<T> {
T readCovariant(List<? extends T>list) {
return list.get(0);
}
}
staticvoid f2() {
CovariantReader<Fruit> fruitReader = newCovariantReader<Fruit>();
Fruit f = fruitReader.readCovariant(fruit);
Fruit a = fruitReader.readCovariant(apples);
}
publicstaticvoid main(String[]args) {
f2();
}
这样就相当与告诉编译器,fruitReader的readCovariant方法接受的参数只要是满足Fruit的子类就行(包括Fruit自身),这样子类和父类之间的关系也就关联上了。
PECS原则
上面我们看到了类似 <? extendsT> 的用法,利用它我们可以从list里面get元素,那么我们可不可以往list里面add元素呢?我们来尝试一下:
publicclass GenericsAndCovariance {
publicstaticvoid main(String[] args) {
// Wildcards allow covariance:
List<? extends Fruit> flist = newArrayList<Apple>();
// Compile Error:can‘t add any type of object:
// flist.add(newApple())
// flist.add(newOrange())
// flist.add(newFruit())
// flist.add(newObject())
flist.add(null); // Legal but uninteresting
// We Know that itreturns at least Fruit:
Fruit f = flist.get(0);
}
}
答案是否定,Java编译器不允许我们这样做,为什么呢?对于这个问题我们不妨从编译器的角度去考虑。因为 List<? extends Fruit> flist 它自身可以有多种含义:
List<? extends Fruit> flist = newArrayList<Fruit>();
List<? extends Fruit> flist = newArrayList<Apple>();
List<? extends Fruit> flist = newArrayList<Orange>();
· 当我们尝试add一个Apple的时候,flist可能指向 new ArrayList<Orange>() ;
· 当我们尝试add一个Orange的时候,flist可能指向 new ArrayList<Apple>() ;
· 当我们尝试add一个Fruit的时候,这个Fruit可以是任何类型的Fruit,而flist可能只想某种特定类型的Fruit,编译器无法识别所以会报错。
所以对于实现了 <? extendsT> 的集合类只能将它视为Producer向外提供(get)元素,而不能作为Consumer来对外获取(add)元素。
如果我们要add元素应该怎么做呢?可以使用 <? super T> :
publicclass GenericWriting {
static List<Apple>apples = newArrayList<Apple>();
static List<Fruit>fruit = newArrayList<Fruit>();
static <T> void writeExact(List<T> list, T item) {
list.add(item);
}
staticvoid f1() {
writeExact(apples, new Apple());
writeExact(fruit, new Apple());
}
static <T> void writeWithWildcard(List<? super T> list, T item) {
list.add(item)
}
staticvoid f2() {
writeWithWildcard(apples, new Apple());
writeWithWildcard(fruit, new Apple());
}
publicstaticvoid main(String[] args) {
f1(); f2();
}
}
这样我们可以往容器里面添加元素了,但是使用super的坏处是以后不能get容器里面的元素了,原因很简单,我们继续从编译器的角度考虑这个问题,对于List<? super Apple> list ,它可以有下面几种含义:
List<? super Apple> list = newArrayList<Apple>();
List<? super Apple> list = newArrayList<Fruit>();
List<? super Apple> list = newArrayList<Object>();
当我们尝试通过list来get一个Apple的时候,可能会get得到一个Fruit,这个Fruit可以是Orange等其他类型的Fruit。
根据上面的例子,我们可以总结出一条规律,”ProducerExtends, Consumer Super”:
· “ProducerExtends” – 如果你需要一个只读List,用它来produceT,那么使用 ? extends T 。
· “ConsumerSuper” – 如果你需要一个只写List,用它来consumeT,那么使用 ? super T 。
· 如果需要同时读取以及写入,那么我们就不能使用通配符了。
如何阅读过一些Java集合类的源码,可以发现通常我们会将两者结合起来一起用,比如像下面这样:
publicclass Collections {
publicstatic <T> void copy(List<? super T> dest, List<? extends T> src) {
for (int i=0; i<src.size(); i++)
dest.set(i, src.get(i));
}
}
类型擦除
Java泛型中最令人苦恼的地方或许就是类型擦除了,特别是对于有C++经验的 程序员 。类型擦除就是说Java泛型只能用于在编译期间的静态类型检查,然后编译器生成的代码会擦除相应的类型信息,这样到了运行期间实际上JVM根本就知道泛型所代表的具体类型。这样做的目的是因为Java泛型是1.5之后才被引入的,为了保持向下的兼容性,所以只能做类型擦除来兼容以前的非泛型代码。对于这一点,如果阅读Java集合框架的源码,可以发现有些类其实并不支持泛型。
说了这么多,那么泛型擦除到底是什么意思呢?我们先来看一下下面这个简单的例子:
publicclass Node<T> {
private T data;
private Node<T>next;
public Node(T data, Node<T> next) } this.data = data;
this.next = next;
}
public T getData() { return data; }
// ...
}
编译器做完相应的类型检查之后,实际上到了运行期间上面这段代码实际上将转换成:
publicclass Node {
private Object data;
private Node next;
public Node(Object data, Node next) {
this.data = data;
this.next = next;
}
public Object getData() { return data; }
// ...
}
这意味着不管我们声明Node<String> 还是 Node<Integer> ,到了运行期间,JVM统统视为 Node<Object> 。有没有什么办法可以解决这个问题呢?这就需要我们自己重新设置bounds了,将上面的代码修改成下面这样:
publicclass Node<T extends Comparable<T>> {
private T data;
private Node<T>next;
public Node(T data, Node<T> next) {
this.data = data;
this.next = next;
}
public T getData() { return data; }
// ...
}
这样编译器就会将 T 出现的地方替换成 Comparable 而不再是默认的 Object 了:
publicclass Node {
private Comparable data;
private Node next;
public Node(Comparable data, Node next) {
this.data = data;
this.next = next;
}
public Comparable getData() { return data; }
// ...
}
上面的概念或许还是比较好理解,但其实泛型擦除带来的问题远远不止这些,接下来我们系统地来看一下类型擦除所带来的一些问题,有些问题在C++的泛型中可能不会遇见,但是在Java中却需要格外小心。
问题一
Java中不允许创建泛型数组,类似下面这样的做法编译器会报错:
List<Integer>[] arrayOfLists = new List<Integer>[2]; // compile-time error
为什么编译器不支持上面这样的做法呢?继续使用逆向思维,我们站在编译器的角度来考虑这个问题。
我们先来看一下下面这个例子:
Object[] strings = new String[2];
strings[0] = "hi"; // OK
strings[1] = 100; // AnArrayStoreException is thrown.
对于上面这段代码还是很好理解,字符串数组不能存放整型元素,而且这样的错误往往要等到代码运行的时候才能发现,编译器是无法识别的。接下来我们再来看一下假设Java支持泛型数组的创建会出现什么后果:
Object[] stringLists = newList<String>[]; // compiler error, but pretend it‘s allowed
stringLists[0] = newArrayList<String>(); // OK
// An ArrayStoreException should be thrown, but the runtime can‘t detectit.
stringLists[1] = newArrayList<Integer>();
假设我们支持泛型数组的创建,由于运行时期类型信息已经被擦除,JVM实际上根本就不知道 new ArrayList<String>() 和 new ArrayList<Integer>() 的区别。类似这样的错误假如出现才实际的应用场景中,将非常难以察觉。
如果你对上面这一点还抱有怀疑的话,可以尝试运行下面这段代码:
publicclass ErasedTypeEquivalence {
publicstaticvoid main(String[] args) {
Class c1 = new ArrayList<String>().getClass();
Class c2 = new ArrayList<Integer>().getClass();
System.out.println(c1 == c2); // true
}
}
问题二
继续复用我们上面的 Node 的类,对于泛型代码,Java编译器实际上还会偷偷帮我们实现一个Bridge method。
publicclass Node<T> {
public T data;
public Node(T data) { this.data = data; }
publicvoid setData(T data) {
System.out.println("Node.setData");
this.data = data;
}
}
publicclass MyNode extends Node<Integer> {
public MyNode(Integer data) { super(data); }
publicvoid setData(Integerdata) {
System.out.println("MyNode.setData");
super.setData(data);
}
}
看完上面的分析之后,你可能会认为在类型擦除后,编译器会将Node和MyNode变成下面这样:
publicclass Node {
public Object data;
public Node(Object data) { this.data = data; }
publicvoid setData(Objectdata) {
System.out.println("Node.setData");
this.data = data;
}
}
publicclass MyNode extends Node {
public MyNode(Integer data) { super(data); }
publicvoid setData(Integerdata) {
System.out.println("MyNode.setData");
super.setData(data);
}
}

想要学习前端开发的同学,可以加群:543#6273#93



















































































































































































































































































以上是关于Java泛型的设计的主要内容,如果未能解决你的问题,请参考以下文章

Java泛型的内部原理设计泛型的好处

什么是java泛型

java中的泛型的使用与理解

Java泛型:泛型的定义(类接口对象)使用继承

Java_泛型笔记

深入 Java 泛型一泛型的作用与定义