java顺序表和树的实现

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了java顺序表和树的实现相关的知识,希望对你有一定的参考价值。

一、顺序表

1.线性表

//java顺序表的实现,如ArrayList就是用线性表实现的,优点是查找快,缺点是添加或删除要移动很多元素,速度慢
public class SequenceList {
    private int MAXLENGTH;//顺序表大小
    private int count;//线性表存在数据个数
    private Data[] data;
    //数据储存
     private static class Data{
        String name;
        int stuNo;
        int scores;
    }
     public void init(int maxLength){
         this.MAXLENGTH=maxLength;
         data=new Data[MAXLENGTH];
     }
     //添加一条数据
     public void add(Data d){
         if(count==MAXLENGTH){
             System.out.println("顺序表已满!不可添加");
         }
         else{
             data[count]=d;
             count++;
             System.out.println("添加成功!");
         }
     }
     //插入任意一条数据
     public void insert(Data d,int position){
         if(count==MAXLENGTH||position>MAXLENGTH||position<0){
             System.out.println("顺序表已满或者插入位置有问题!不可插入");
         }
         else{
             for(int i=count;i>=position;i--){
                 data[i+1]=data[i];
             }
             data[position]=d;
             count++;
             System.out.println("插入成功!");
         }
     }
     //删除数据
     public void del(int position){
         if(position>count+1||position<0){
             System.out.println("删除位置有误!");
         }
         else{
             for(int i=position;i<count;i++){
                 data[i]=data[i+1];
             }
             count--;
             System.out.println("删除成功!");
         }
     }
     //更新一个数据
     public void updata(Data d,int position){
         if(position>count+1||position<0){
             System.out.println("更新位置有误!");
         }
         else{
             data[position]=d;
             System.out.println("更新成功!");
         }
     }
     //查询一个数据
     public Data sel(int position){
         if(position>count+1||position<0){
             System.out.println("查询位置有误!");
             return null;
         }
         else{
             return data[position];
         }
     }
     public static void main(String[] args){
         SequenceList sl=new SequenceList();
         sl.init(10);
         Data d=new Data();
         sl.add(d);
         sl.insert(d, 0);
         sl.del(0);
     }
}

2.链式表

 public class SingleList {
    
    private Node_Single head = null;//头节点
    private Node_Single tail = null;//尾节点(空节点)相当于哨兵元素
 
    /**
     * 初始化一个链表(设置head )
     * @param key
     */
    public void initList(Node_Single node){
        head  = node;
        head.next = tail;
    }
     
    /**
     * 添加一个元素
     * @param node
     */
    public void addTolist(Node_Single node){
        if(head == null){
            initList(node);
        }else{
            Node_Single tmp = head;
            head = node;
            node.next = tmp;
        }
    }
     
    /**
     * 遍历链表,删除某一个节点
     * @param node
     * @param myList
     */
    public void deleteNode(Node_Single node,SingleList myList){
        if(myList == null){
            return ;
        }
        Node_Single tmp =null;
        for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
            if(tmp.next !=null && node.getKey().equals(tmp.next.getKey())){//该元素和后一个元素相同。指针指向下一元素的下一元素
                if(tmp.next.next != null){
                    tmp.next = tmp.next.next;
                }else{
                    tmp.next = null;
                }
            }
        }
    }
     
    public void printList(SingleList myList){
        Node_Single tmp =null;
        for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
            System.out.println(tmp.getKey());
        }
    }
     
    public Node_Single getHead() {
        return head;
    }
    public void setHead(Node_Single head) {
        this.head = head;
    }
    public Node_Single getTail() {
        return tail;
    }
    public void setTail(Node_Single tail) {
        this.tail = tail;
    }
    public static void main(String[] args){
        SingleList myList = new SingleList();
        Node_Single node_1 = new Node_Single("1");
        Node_Single node_2 = new Node_Single("2");
        Node_Single node_3 = new Node_Single("3");
        Node_Single node_4 = new Node_Single("4");
        Node_Single node_5 = new Node_Single("5");
        Node_Single node_6 = new Node_Single("6");
        Node_Single node_7 = new Node_Single("7");
        myList.addTolist(node_1);
        myList.addTolist(node_2);
        myList.addTolist(node_3);
        myList.addTolist(node_4);
        myList.addTolist(node_5);
        myList.addTolist(node_6);
        myList.addTolist(node_7);
        myList.deleteNode(node_3, myList);
        myList.printList(myList);
    }
    public static class Node_Single {
        public String key;//节点的值
         
        public Node_Single next;//指向下一个的指针
     
        public Node_Single(String key){//初始化head
            this.key = key;
            this.next = null;
        }
        public Node_Single(String key,Node_Single next){
            this.key = key;
            this.next = next;
        }
        public String getKey() {
            return key;
        }
     
        public void setKey(String key) {
            this.key = key;
        }
     
        public Node_Single getNext() {
            return next;
        }
     
        public void setNext(Node_Single next) {
            this.next = next;
        }
        @Override
        public String toString() {
            return "Node_Single [key=" + key + ", next=" + next + "]";
        }
    }
}

三、二叉树

import java.util.Stack;

public class BinaryTree {  
  
      
    private TreeNode root=null;  
      
    public BinaryTree(){  
        root=new TreeNode(1,"rootNode(A)");  
    }  
      
    /** 
     * 创建一棵二叉树 
     * <pre> 
     *           A 
     *     B          C 
     *  D     E            F 
     *  </pre> 
     * @param root 
     * @author WWX 
     */  
    public void createBinTree(TreeNode root){  
        TreeNode newNodeB = new TreeNode(2,"B");  
        TreeNode newNodeC = new TreeNode(3,"C");  
        TreeNode newNodeD = new TreeNode(4,"D");  
        TreeNode newNodeE = new TreeNode(5,"E");  
        TreeNode newNodeF = new TreeNode(6,"F");  
        root.leftChild=newNodeB;  
        root.rightChild=newNodeC;  
        root.leftChild.leftChild=newNodeD;  
        root.leftChild.rightChild=newNodeE;  
        root.rightChild.rightChild=newNodeF;  
    }  
      
      
    public boolean isEmpty(){  
        return root==null;  
    }  
  
    //树的高度  
    public int height(){  
        return height(root);  
    }  
      
    //节点个数  
    public int size(){  
        return size(root);  
    }  
      
      
    private int height(TreeNode subTree){  
        if(subTree==null)  
            return 0;//递归结束:空树高度为0  
        else{  
            int i=height(subTree.leftChild);  
            int j=height(subTree.rightChild);  
            return (i<j)?(j+1):(i+1);  
        }  
    }  
      
    private int size(TreeNode subTree){  
        if(subTree==null){  
            return 0;  
        }else{  
            return 1+size(subTree.leftChild)  
                    +size(subTree.rightChild);  
        }  
    }  
      
    //返回双亲结点  
    public TreeNode parent(TreeNode element){  
        return (root==null|| root==element)?null:parent(root, element);  
    }  
      
    public TreeNode parent(TreeNode subTree,TreeNode element){  
        if(subTree==null)  
            return null;  
        if(subTree.leftChild==element||subTree.rightChild==element)  
            //返回父结点地址  
            return subTree;  
        TreeNode p;  
        //现在左子树中找,如果左子树中没有找到,才到右子树去找  
        if((p=parent(subTree.leftChild, element))!=null)  
            //递归在左子树中搜索  
            return p;  
        else  
            //递归在右子树中搜索  
            return parent(subTree.rightChild, element);  
    }  
      
    public TreeNode getLeftChildNode(TreeNode element){  
        return (element!=null)?element.leftChild:null;  
    }  
      
    public TreeNode getRightChildNode(TreeNode element){  
        return (element!=null)?element.rightChild:null;  
    }  
      
    public TreeNode getRoot(){  
        return root;  
    }  
      
    //在释放某个结点时,该结点的左右子树都已经释放,  
    //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放  
    public void destroy(TreeNode subTree){  
        //删除根为subTree的子树  
        if(subTree!=null){  
            //删除左子树  
            destroy(subTree.leftChild);  
            //删除右子树  
            destroy(subTree.rightChild);  
            //删除根结点  
            subTree=null;  
        }  
    }  
      
    public void traverse(TreeNode subTree){  
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;  
        traverse(subTree.leftChild);  
        traverse(subTree.rightChild);  
    }  
      
    //前序遍历  
    public void preOrder(TreeNode subTree){  
        if(subTree!=null){  
            visted(subTree);  
            preOrder(subTree.leftChild);  
            preOrder(subTree.rightChild);  
        }  
    }  
      
    //中序遍历  
    public void inOrder(TreeNode subTree){  
        if(subTree!=null){  
            inOrder(subTree.leftChild);  
            visted(subTree);  
            inOrder(subTree.rightChild);  
        }  
    }  
      
    //后续遍历  
    public void postOrder(TreeNode subTree) {  
        if (subTree != null) {  
            postOrder(subTree.leftChild);  
            postOrder(subTree.rightChild);  
            visted(subTree);  
        }  
    }  
      
    //前序遍历的非递归实现  
    public void nonRecPreOrder(TreeNode p){  
        Stack<TreeNode> stack=new Stack<TreeNode>();  
        TreeNode node=p;  
        while(node!=null||stack.size()>0){  
            while(node!=null){  
                visted(node);  
                stack.push(node);  
                node=node.leftChild;  
            }  
          while(stack.size()>0){  
                node=stack.pop();  
                node=node.rightChild;  
            }   
        }  
    }  
      
    //中序遍历的非递归实现  
    public void nonRecInOrder(TreeNode p){  
        Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();  
        TreeNode node =p;  
        while(node!=null||stack.size()>0){  
            //存在左子树  
            while(node!=null){  
                stack.push(node);  
                node=node.leftChild;  
            }  
            //栈非空  
            if(stack.size()>0){  
                node=stack.pop();  
                visted(node);  
                node=node.rightChild;  
            }  
        }  
    }  
      
    //后序遍历的非递归实现  
    public void noRecPostOrder(TreeNode p){  
        Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();  
        TreeNode node =p;  
        while(p!=null){  
            //左子树入栈  
            for(;p.leftChild!=null;p=p.leftChild){  
                stack.push(p);  
            }  
            //当前结点无右子树或右子树已经输出  
            while(p!=null&&(p.rightChild==null||p.rightChild==node)){  
                visted(p);  
                //纪录上一个已输出结点  
                node =p;  
                if(stack.empty())  
                    return;  
                p=stack.pop();  
            }  
            //处理右子树  
            stack.push(p);  
            p=p.rightChild;  
        }  
    }  
    public void visted(TreeNode subTree){  
        subTree.isVisted=true;  
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;  
    }  
      
      
    /** 
     * 二叉树的节点数据结构 
     * @author WWX 
     */  
    private class  TreeNode{  
        private int key=0;  
        private String data=null;  
        private boolean isVisted=false;  
        private TreeNode leftChild=null;  
        private TreeNode rightChild=null;  
          
        public TreeNode(){}  
          
        /** 
         * @param key  层序编码 
         * @param data 数据域 
         */  
        public TreeNode(int key,String data){  
            this.key=key;  
            this.data=data;  
            this.leftChild=null;  
            this.rightChild=null;  
        }  
  
  
    }  
      
      
    //测试  
    public static void main(String[] args) {  
        BinaryTree bt = new BinaryTree();  
        bt.createBinTree(bt.root);  
        System.out.println("the size of the tree is " + bt.size());  
        System.out.println("the height of the tree is " + bt.height());  
          
        System.out.println("*******(前序遍历)[ABDECF]遍历*****************");  
        bt.preOrder(bt.root);  
          
        System.out.println("*******(中序遍历)[DBEACF]遍历*****************");  
        bt.inOrder(bt.root);  
         
        System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");  
        bt.postOrder(bt.root);  
          
        System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");  
        bt.nonRecPreOrder(bt.root);  
          
        System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");  
        bt.nonRecInOrder(bt.root);  
          
        System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");  
        bt.noRecPostOrder(bt.root);  
    }  
}  

 

以上是关于java顺序表和树的实现的主要内容,如果未能解决你的问题,请参考以下文章

JAVA数据结构与算法之顺序存储二叉树

树的前序遍历与中序遍历构造二叉树和树的中序遍历与后序遍历构造二叉树

二叉搜索树的平衡--AVL树和树的旋转

二叉搜索树的平衡--AVL树和树的旋转(图解)

Java通过Java理解和实现——顺序表和单链表

图解数据结构树和二叉树全面总结