TensorFlow如何入门?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow如何入门?相关的知识,希望对你有一定的参考价值。

1. TensorFlow是什么

是一个深度学习库,由 Google 开源,可以对定义在 Tensor(张量)上的函数自动求导。

Tensor(张量)意味着 N 维数组,Flow(流)意味着基于数据流图的计算,TensorFlow即为张量从图的一端流动到另一端。

它的一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。

支持CNN、RNN和LSTM算法,是目前在 Image,NLP 最流行的深度神经网络模型。

2. 为什么需要TensorFlow等库

深度学习通常意味着建立具有很多层的大规模的神经网络。

除了输入X,函数还使用一系列参数,其中包括标量值、向量以及最昂贵的矩阵和高阶张量。

在训练网络之前,需要定义一个代价函数,常见的代价函数包括回归问题的方差以及分类时候的交叉熵。

训练时,需要连续的将多批新输入投入网络,对所有的参数求导后,代入代价函数,从而更新整个网络模型。

这个过程中有两个主要的问题:1. 较大的数字或者张量在一起相乘百万次的处理,使得整个模型代价非常大。2. 手动求导耗时非常久。

所以TensorFlow的对函数自动求导以及分布式计算,可以帮我们节省很多时间来训练模型。

3. TensorFlow的优点

第一,基于Python,写的很快并且具有可读性。

第二,在多GPU系统上的运行更为顺畅。

第三,代码编译效率较高。

第四,社区发展的非常迅速并且活跃。

第五,能够生成显示网络拓扑结构和性能的可视化图。

4. TensorFlow的工作原理

TensorFlow是用数据流图(data flow graphs)技术来进行数值计算的。

数据流图是描述有向图中的数值计算过程。

有向图中,节点通常代表数学运算,边表示节点之间的某种联系,它负责传输多维数据(Tensors)。
节点可以被分配到多个计算设备上,可以异步和并行地执行操作。因为是有向图,所以只有等到之前的入度节点们的计算状态完成后,当前节点才能执行操作。

参考技术A

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

以上是关于TensorFlow如何入门?的主要内容,如果未能解决你的问题,请参考以下文章

如何高效入门Tensorflow

TensorFlow 如何入门,如何快速学习?

TensorFlow入门

如何快速入门TensorFlow ?丨极客时间

小白入门深度学习 | 第六篇:TensorFlow2 回调极速入门

小白入门深度学习 | 第六篇:TensorFlow2 回调极速入门