什么叫中国剩余定理

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么叫中国剩余定理相关的知识,希望对你有一定的参考价值。

中国剩余定理释义:又称“孙子定理”。1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲。1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”。

孙子定理是中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。


扩展资料:

中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组  有解,并且通解可以用如下方式构造得到:设  是整数m1,m2, ... ,mn的乘积,并设  是除了mi以外的n- 1个整数的乘积。

方程组  的通解形式为 

一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。

宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》:

三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知

这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后减去105(或者105的倍数),得到的余数就是答案。比如说在以上的物不知数问题里面,按歌诀求出的结果就是23。

参考资料:百度百科---孙子定理

参考技术A 如果正整数m1、m2、……、mk两两互质,那么同余方程组
x≡a,(mod mi), i=1,2,……k 有无穷多解。 且这些解关于模 M=m1,m2,……,mk同余,可表成
x≡a1,M'1M1+a2M'2M2+……+akM'KMK(mod M).
其中Mk=M/m,而M'k是满足M'kMk=1(mod mk)的正整数。这一算法后来传入西方,被称为中国剩余定理。

注:互质,也称互素。即两个数的最大公约数(最大公共因数,great common divisor)为1, 记号:gcd(a,b)=1.

名题:
三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。
即:
1、将军点兵,三三数余2,五五数余3,七七数余2。问兵几何?
2、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?——《孙子算经》
由于孙子算经成书较早,并且较早地介绍了这样的问题,故中国剩余定理的众多异名中,一个著名的另名是:孙子定理。

写成数论记号:同余号≡以下简记为==
x==2 mod 3
==3 mod 5
==2 mod 7
这在数论中称为同余方程组,简称同余式组。

中国剩余定理就是求解同余式组的手段之一(注意,并不是唯一方法)。它的思想是这样的:
求出
x1==1 mod 3
==0 mod 5
==0 mod 7
x2==0 mod 3
==1 mod 5
==0 mod 7
x3==0 mod 3
==0 mod 5
==1 mod 7
那么2x1+3x2+2x3即为所求解x。

如果用向量记法,就更容易理解:
原题:x==(2,3,2) mod (3,5,7)
孙子定理:x1==(1,0,0);x2==(0,1,0);x3=(0,0,1)
x==2x1+3x2+2x3.

在求解x1时,显然x1==(0,0)mod (5,7),即x1被5,7整除。从而可设x1=5*7*k1==1 mod 3.
这里k1就是人们所说的乘率,古人求k1常用的就是大衍求一术。

这种方法实际上就是分化了维度,通过单位向量简化问题。近世代数的许多观点与方法,与这不谋而合,实际是受了中国剩余定理的启发。还有拉格朗日插值法,也与此一致。

同时我们还可以看到,x==(2,3,2) mod (3,5,7)
还可以等效于x==(2,2,2)+(0,1,0),这样无疑是对上述算法的一种改进。正如牛顿插值法相对于拉格朗晶插值的改进。

以上内容,来自wsktuuytyh (用户名来源于姓名的五笔编码:wsk 何 tuu 冬 ytyh 州)的百度答题与博文。欢迎引用。欢迎交流。本回答被提问者和网友采纳
参考技术B

中国剩余定理(孙子定理)不足表现

中国剩余定理(孙子定理)不足表现

以上是关于什么叫中国剩余定理的主要内容,如果未能解决你的问题,请参考以下文章

中国数学剩余定理

中国剩余定理CRT及 扩展中国剩余定理扩展CRT

CRT&EXCRT(中国剩余定理和扩展中国剩余定理)

中国剩余定理讲解

中国剩余定理公式是啥?

中国剩余定理-----孙子定理是啥?