死磕Java并发-----J.U.C之Java并发容器:ConcurrentHashMap
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了死磕Java并发-----J.U.C之Java并发容器:ConcurrentHashMap相关的知识,希望对你有一定的参考价值。
HashMap是我们用得非常频繁的一个集合,但是由于它是非线程安全的,在多线程环境下,put操作是有可能产生死循环的,导致CPU利用率接近100%。为了解决该问题,提供了Hashtable和Collections.synchronizedMap(hashMap)两种解决方案,但是这两种方案都是对读写加锁,独占式,一个线程在读时其他线程必须等待,吞吐量较低,性能较为低下。故而Doug Lea大神给我们提供了高性能的线程安全HashMap:ConcurrentHashMap。
ConcurrentHashMap的实现
ConcurrentHashMap作为Concurrent一族,其有着高效地并发操作,相比Hashtable的笨重,ConcurrentHashMap则更胜一筹了。
在1.8版本以前,ConcurrentHashMap采用分段锁的概念,使锁更加细化,但是1.8已经改变了这种思路,而是利用CAS+Synchronized来保证并发更新的安全,当然底层采用数组+链表+红黑树的存储结构。
关于1.7和1.8的区别请参考占小狼博客:谈谈ConcurrentHashMap1.7和1.8的不同实现:http://www.jianshu.com/p/e694f1e868ec
我们从如下几个部分全面了解ConcurrentHashMap在1.8中是如何实现的:
- 重要概念
- 重要内部类
- ConcurrentHashMap的初始化
- put操作
- get操作
- size操作
- 扩容
- 红黑树转换
重要概念
ConcurrentHashMap定义了如下几个常量:
// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
//
static final int MIN_TREEIFY_CAPACITY = 64;
//
private static final int MIN_TRANSFER_STRIDE = 16;
//
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED = -1;
// 树根节点的hash值
static final int TREEBIN = -2;
// ReservationNode的hash值
static final int RESERVED = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
上面是ConcurrentHashMap定义的常量,简单易懂,就不多阐述了。下面介绍ConcurrentHashMap几个很重要的概念。
- table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
- nextTable:扩容时新生成的数据,数组为table的两倍;
- Node:节点,保存key-value的数据结构;
- ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
- sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
- 负数代表正在进行初始化或扩容操作
- -1代表正在初始化
- -N 表示有N-1个线程正在进行扩容操作
- 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
重要内部类
为了实现ConcurrentHashMap,Doug Lea提供了许多内部类来进行辅助实现,如Node,TreeNode,TreeBin等等。下面我们就一起来看看ConcurrentHashMap几个重要的内部类。
Node
作为ConcurrentHashMap中最核心、最重要的内部类,Node担负着重要角色:key-value键值对。所有插入ConCurrentHashMap的中数据都将会包装在Node中。定义如下:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val; //带有volatile,保证可见性
volatile Node<K,V> next; //下一个节点的指针
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key + "=" + val; }
/** 不允许修改value的值 */
public final V setValue(V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(Object o) {
Object k, v, u; Map.Entry<?,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
/** 赋值get()方法 */
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
在Node内部类中,其属性value、next都是带有volatile的。同时其对value的setter方法进行了特殊处理,不允许直接调用其setter方法来修改value的值。最后Node还提供了find方法来赋值map.get()。
TreeNode
我们在学习HashMap的时候就知道,HashMap的核心数据结构就是链表。在ConcurrentHashMap中就不一样了,如果链表的数据过长是会转换为红黑树来处理。当它并不是直接转换,而是将这些链表的节点包装成TreeNode放在TreeBin对象中,然后由TreeBin完成红黑树的转换。所以TreeNode也必须是ConcurrentHashMap的一个核心类,其为树节点类,定义如下:
static final class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node<K,V> find(int h, Object k) {
return findTreeNode(h, k, null);
}
//查找hash为h,key为k的节点
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
if (k != null) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk; TreeNode<K,V> q;
TreeNode<K,V> pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
源码展示TreeNode继承Node,且提供了findTreeNode用来查找查找hash为h,key为k的节点。
TreeBin
该类并不负责key-value的键值对包装,它用于在链表转换为红黑树时包装TreeNode节点,也就是说ConcurrentHashMap红黑树存放是TreeBin,不是TreeNode。该类封装了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。由于TreeBin的代码太长我们这里只展示构造方法(构造方法就是构造红黑树的过程):
static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K, V> root;
volatile TreeNode<K, V> first;
volatile Thread waiter;
volatile int lockState;
static final int WRITER = 1; // set while holding write lock
static final int WAITER = 2; // set when waiting for write lock
static final int READER = 4; // increment value for setting read lock
TreeBin(TreeNode<K, V> b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode<K, V> r = null;
for (TreeNode<K, V> x = b, next; x != null; x = next) {
next = (TreeNode<K, V>) x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
} else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K, V> p = r; ; ) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
}
/** 省略很多代码 */
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
通过构造方法是不是发现了部分端倪,构造方法就是在构造一个红黑树的过程。
ForwardingNode
这是一个真正的辅助类,该类仅仅只存活在ConcurrentHashMap扩容操作时。只是一个标志节点,并且指向nextTable,它提供find方法而已。该类也是集成Node节点,其hash为-1,key、value、next均为null。如下:
static final class ForwardingNode<K,V> extends Node<K,V> {
final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
}
Node<K,V> find(int h, Object k) {
// loop to avoid arbitrarily deep recursion on forwarding nodes
outer: for (Node<K,V>[] tab = nextTable;;) {
Node<K,V> e; int n;
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
for (;;) {
int eh; K ek;
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
if (eh < 0) {
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode<K,V>)e).nextTable;
continue outer;
}
else
return e.find(h, k);
}
if ((e = e.next) == null)
return null;
}
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
构造函数
ConcurrentHashMap提供了一系列的构造函数用于创建ConcurrentHashMap对象:
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
初始化: initTable()
ConcurrentHashMap的初始化主要由initTable()方法实现,在上面的构造函数中我们可以看到,其实ConcurrentHashMap在构造函数中并没有做什么事,仅仅只是设置了一些参数而已。其真正的初始化是发生在插入的时候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作时。其方法定义如下:
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//sizeCtl < 0 表示有其他线程在初始化,该线程必须挂起
if ((sc = sizeCtl) < 0)
Thread.yield();
// 如果该线程获取了初始化的权利,则用CAS将sizeCtl设置为-1,表示本线程正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 进行初始化
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 下次扩容的大小
sc = n - (n >>> 2); ///相当于0.75*n 设置一个扩容的阈值
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。
put操作
ConcurrentHashMap最常用的put、get操作,ConcurrentHashMap的put操作与HashMap并没有多大区别,其核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。我们先看源代码,然后根据源代码一步一步分析:
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key、value均不能为null
if (key == null || value == null) throw new NullPointerException();
//计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// table为null,进行初始化工作
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//如果i位置没有节点,则直接插入,不需要加锁
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 有线程正在进行扩容操作,则先帮助扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//对该节点进行加锁处理(hash值相同的链表的头节点),对性能有点儿影响
synchronized (f) {
if (tabAt(tab, i) == f) {
//fh > 0 表示为链表,将该节点插入到链表尾部
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
//hash 和 key 都一样,替换value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
//putIfAbsent()
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//链表尾部 直接插入
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//树节点,按照树的插入操作进行插入
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果链表长度已经达到临界值8 就需要把链表转换为树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//size + 1
addCount(1L, binCount);
return null;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
按照上面的源码,我们可以确定put整个流程如下:
- 判空;ConcurrentHashMap的key、value都不允许为null
- 计算hash。利用方法计算hash值。
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
- 1
- 2
- 3
- 1
- 2
- 3
- 遍历table,进行节点插入操作,过程如下:
- 如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
- 根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n - 1) & hash
- 如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
- 如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
- 若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换为红黑树结构
- 调用addCount方法,ConcurrentHashMap的size + 1
这里整个put操作已经完成。
get操作
ConcurrentHashMap的get操作还是挺简单的,无非就是通过hash来找key相同的节点而已,当然需要区分链表和树形两种情况。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 链表,遍历
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
以上是关于死磕Java并发-----J.U.C之Java并发容器:ConcurrentHashMap的主要内容,如果未能解决你的问题,请参考以下文章
死磕Java并发-----J.U.C之阻塞队列:SynchronousQueue
死磕Java并发-----J.U.C之Copy-On-Write容器