javacpp-opencv图像处理系列:国内车辆牌照检测识别系统(万份测试车牌识别准确率99.7%以上,单次平均耗时39ms)

Posted eguid

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了javacpp-opencv图像处理系列:国内车辆牌照检测识别系统(万份测试车牌识别准确率99.7%以上,单次平均耗时39ms)相关的知识,希望对你有一定的参考价值。

javaCV图像处理系列:

 

 

一、实现的功能

1、车牌检测(支持图片中含有单车牌和多车牌检测)

2、车牌定位

3、车牌字符识别

4、千份测试单次检测识别完成平均耗时39ms,准确率99.9%

二、项目维护

github项目地址:https://github.com/eguid/vlpr4j

注意:由于授权协议具有传染性,本项目采用GPL v2.0与ODL(Open Database License)授权协议,本项目不适用于任何商业性行为,包括销售或者赠送。

三、使用方式

 
package cc.eguid.charsocr;

import java.awt.Image;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.awt.image.SampleModel;
import java.math.BigDecimal;
import java.util.Vector;

import org.bytedeco.javacpp.opencv_imgcodecs;
import org.bytedeco.javacpp.Pointer;
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_core.CvType;
import org.bytedeco.javacpp.opencv_core.CvTypeInfo;
import org.bytedeco.javacpp.opencv_core.Mat;

import cc.eguid.charsocr.core.CharsRecognise;
import cc.eguid.charsocr.core.PlateDetect;

/**
 * 车牌识别
 * @author eguid
 *
 */
public class PlateRecognition {
	 static PlateDetect plateDetect =null;
	 static CharsRecognise cr=null;
	 static{
		plateDetect=new PlateDetect();
		plateDetect.setPDLifemode(true);
		cr = new CharsRecognise();
	 }
	
	 /**
	     * 单个车牌识别
	     * @param mat
	     * @return
	     */
	    public static String plateRecognise(Mat mat){
	         Vector<Mat> matVector = new Vector<Mat>(1);
	         if (0 == plateDetect.plateDetect(mat, matVector)) {
	             if(matVector.size()>0){
	            	 return cr.charsRecognise(matVector.get(0));
	             }
	         }
	         return null;
	    }
	    /**
	     * 多车牌识别
	     * @param mat
	     * @return
	     */
	    public static String[] mutiPlateRecognise(Mat mat){
	    	 PlateDetect plateDetect = new PlateDetect();
	         plateDetect.setPDLifemode(true);
	         Vector<Mat> matVector = new Vector<Mat>(10);
	         if (0 == plateDetect.plateDetect(mat, matVector)) {
	             CharsRecognise cr = new CharsRecognise();
	             String[] results=new String[matVector.size()];
	             for (int i = 0; i < matVector.size(); ++i) {
	                 String result = cr.charsRecognise(matVector.get(i));
	               results[i]=result;
	             }
	             return results;
	         }
	         return null;
	    }
	    /**
	     * 单个车牌识别
	     * @param mat
	     * @return
	     */
	    public static String plateRecognise(String imgPath){
	    	 Mat src = opencv_imgcodecs.imread(imgPath);
	    	 return plateRecognise(src);
	    }
	    /**
	     * 多车牌识别
	     * @param mat
	     * @return
	     */
	    public static String[] mutiPlateRecognise(String imgPath){
	    	Mat src = opencv_imgcodecs.imread(imgPath);
	    	return mutiPlateRecognise(src);
	    }
	    
	    public static void main(String[] args){
	    	int sum=100;
	    	int errNum=0;
	    	int sumTime=0;
	    	long longTime=0;
	    	for(int i=sum;i>0;i--){
	    	 String imgPath = "res/image/test_image/plate_judge.jpg";
	    	 Mat src = opencv_imgcodecs.imread(imgPath);
	    	 long now =System.currentTimeMillis();
	    	String ret=plateRecognise(src);
	    	System.err.println(ret);
	    	long s=System.currentTimeMillis()-now;
	    	if(s>longTime){
	    		longTime=s;
	    	}
        	sumTime+=s;
        	if(!"川A0CP56".equals(ret)){
        		errNum++;
        	}
	    	}
	    	System.err.println("总数量:"+sum);
	    	System.err.println("单次最长耗时:"+longTime+"ms");
	    	
	    	BigDecimal errSum=new BigDecimal(errNum);
	    	BigDecimal sumNum=new BigDecimal(sum);
	    	BigDecimal c=sumNum.subtract(errSum).divide(sumNum).multiply(new BigDecimal(100));
	    	System.err.println("总耗时:"+sumTime+"ms,平均处理时长:"+sumTime/sum+"ms,错误数量:"+errNum+",正确识别率:"+c+"%");
	    }
}

以上是关于javacpp-opencv图像处理系列:国内车辆牌照检测识别系统(万份测试车牌识别准确率99.7%以上,单次平均耗时39ms)的主要内容,如果未能解决你的问题,请参考以下文章

无人机视频图像运动目标检测算法综述------2019年-------------

毕设题目:Matlab车辆计数

用python爬虫爬取携程网国内租车怎么获取所在地址的车辆信息、价格还有评分并安型号分类提取出来?

伊顿开发48伏系列技术,帮助车辆制造商满足全球新排放法规

车载监控对消防有多重要?TSINGSEE助力消防车辆智慧化监管

深入理解JavaScript系列(34):设计模式之命令模式