Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs

Posted Elastic 中国社区官方博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs相关的知识,希望对你有一定的参考价值。

在我之前的文章 “Elastic:使用 Kafka 部署 Elastic Stack”,我构建了从 Beats => Kafka => Logstash => Elasticsearch 的管道。在今天的文章中,我将描述从 Nodejs => Kafka => Logstash => Elasticsearch 这样的一个数据流。在之前的文章 “Elastic:Data pipeline:使用 Kafka => Logstash => Elasticsearch” 中,我也展示了使用 Python 的方法。我的配置如下:

在上面的架构中,有几个重要的组件:

  • Kafka Server:这就是数据首先发布的地方。
  • Producer:扮演将数据发布到 Kafka topic 的角色。 在现实世界中,你可以具有任何可以为 kafka 主题生成数据的实体。 在我们的示例中,我们将生成伪造的用户注册数据。
  • Elasticsearch:这将充当将用户注册数据存储到其自身的数据库,并提供搜索及分析。
  • Logstash:Logstash 将扮演中间人的角色,在这里我们将从 Kafka topic 中读取数据,然后将其插入到 Elasticsearch 中。
  • Kibana:Kibana 将扮演图形用户界面的角色,它将以可读或图形格式显示数据。

为了演示的方便,你可以在地址下载演示文件 GitHub - liu-xiao-guo/data-pipeline8。我的文件目录是这样的:

$ pwd
/Users/liuxg/data/data-pipeline8
$ tree -L 3
.
├── README.md
├── docker-elk
│   ├── docker-compose.yml
│   └── logstash_pipeline
│       └── kafka-elastic.conf
├── docker-kafka
│   └── kafka-docker-compose.yml
└── kafka_producer.js
$ pwd
/Users/liuxg/data/data-pipeline8/docker-elk
$ ls -al
total 16
drwxr-xr-x  5 liuxg  staff   160 May 14  2021 .
drwxr-xr-x  8 liuxg  staff   256 Mar  5 07:36 ..
-rw-r--r--  1 liuxg  staff    29 May  7  2021 .env
-rw-r--r--  1 liuxg  staff  1064 May 13  2021 docker-compose.yml
drwxr-xr-x  3 liuxg  staff    96 May 13  2021 logstash_pipeline
$ vi .env
$ cat .env
ELASTIC_STACK_VERSION=8.6.2

上面的其它文件将在我下面的章节中介绍。如果你自己想通过手动的方式部署 Kafka 请参阅我的另外一篇文章 “使用 Kafka 部署 Elastic Stack”。

安装

Kafka,Zookeeper 及 Kafka Manager

我将使用 docker-compose 来进行安装。一旦安装好,我们可以看到:

  • Kafka 在 PORT 9092 侦听
  • Zookeeper 在 PORT 2181 侦听
  • Kafka Manager 侦听 PORT 9000 侦听

kafka-docker-compose.yml

version: "3"
services:
  zookeeper:
    image: zookeeper
    restart: always
    container_name: zookeeper
    hostname: zookeeper
    ports:
      - 2181:2181
    environment:
      ZOO_MY_ID: 1
  kafka:
    image: wurstmeister/kafka
    container_name: kafka
    ports:
    - 9092:9092
    environment:
      KAFKA_ADVERTISED_HOST_NAME: 192.168.0.3 
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
  kafka_manager:
    image: hlebalbau/kafka-manager:stable
    container_name: kakfa-manager
    restart: always
    ports:
      - "9000:9000"
    environment:
      ZK_HOSTS: "zookeeper:2181"
      APPLICATION_SECRET: "random-secret"
    command: -Dpidfile.path=/dev/null

我们可以使用如下的命令来进行启动(在 Docker 运行的前提下):

docker-compose -f kafka-docker-compose.yml up

 一旦运行起来后,我们可以使用如下的命令来进行查看:

docker ps
$ docker ps
CONTAINER ID   IMAGE                            COMMAND                  CREATED              STATUS              PORTS                                                  NAMES
a4acc0730467   zookeeper                        "/docker-entrypoint.…"   About a minute ago   Up About a minute   2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper
02ec8e8a1e30   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   About a minute ago   Up About a minute   0.0.0.0:9000->9000/tcp                                 kakfa-manager
a85c32c0c08e   wurstmeister/kafka               "start-kafka.sh"         About a minute ago   Up About a minute   0.0.0.0:9092->9092/tcp                                 kafka

我们发现 Kafka Manager 运行于 9000 端口。我们打开本地电脑的 9000 端口:

在上面它显示了一个默认的 topic,虽然不是我们想要的。

 

这样,我们就把 Kafka 上的 kafka_logstash topic 创建好了。

我们可以登录 kafka 容器来验证我们已经创建的 topic。我们使用如下的命令来找到 kafka 容器的名称:

docker ps -s
$ docker ps -s
CONTAINER ID   IMAGE                            COMMAND                  CREATED         STATUS         PORTS                                                  NAMES           SIZE
de7453250529   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   9 minutes ago   Up 9 minutes   0.0.0.0:9000->9000/tcp                                 kakfa-manager   117kB (virtual 427MB)
65eba68350f1   zookeeper                        "/docker-entrypoint.…"   9 minutes ago   Up 9 minutes   2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper       33kB (virtual 288MB)
3394868b23e9   wurstmeister/kafka               "start-kafka.sh"         9 minutes ago   Up 9 minutes   0.0.0.0:9092->9092/tcp                                 kafka           210kB (virtual 457MB)

上面显示 kafka 的容器名称为 wurstmeister/kafka。我们使用如下的命令来进行登录:

docker exec -it wurstmeister/kafka  /bin/bash

然后我们在容器里 打入如下的命令:

$ docker exec -it kafka  /bin/bash
root@3394868b23e9:/# kafka-topics.sh --list -zookeeper zookeeper:2181
__consumer_offsets
kafka_logstash

上面的命令显示已经存在的被创建的 kafka_logstash topic。我们可以使用如下的命令来向这个被创建的 topic 来发送数据:

kafka-console-consumer.sh --bootstrap-server 192.168.0.3:9092 --topic kafka_logstash --from-beginning
root@3394868b23e9:/# kafka-console-consumer.sh --bootstrap-server 192.168.0.3:9092 --topic kafka_logstash --from-beginning

Elastic Stack 安装

 我们接下来安装 Elastic Stack。同样地,我使用 docker-compose 来部署 Elasticsearch, Logstash 及 Kibana。你们可以参考我之前的文章 “Logstash:在 Docker 中部署 Logstash”。为了能够把数据传入到 Elasticsearch 中,我们需要在 Logstash 中配置一个叫做 kafka-elastic.conf 的配置文件:

kafka-elastic.conf

input 
    kafka 
       bootstrap_servers => "192.168.0.3:9092"
       topics => ["kafka_logstash"]
    


output 
   elasticsearch 
      hosts => ["elasticsearch:9200"]
      index => "kafka_logstash"
      workers => 1
    

请注意:在上面的 192.168.0.3 为我自己电脑的本地 IP 地址。为了说明问题的方便,我们没有对来自 kafka 里的 registered_user 这个 topic 做任何的数据处理,而直接发送到 Elasticsearch 中。

我们的 docker-compose.yml 配置文件如下:

docker-compose.yml

version: "3.9"
services:
  elasticsearch:
    image: elasticsearch:$ELASTIC_STACK_VERSION
    container_name: elasticsearch
    environment:
      - discovery.type=single-node
      - ES_JAVA_OPTS=-Xms1g -Xmx1g
      - xpack.security.enabled=false
    volumes:
      - type: volume
        source: es_data
        target: /usr/share/elasticsearch/data
    ports:
      - target: 9200
        published: 9200
    networks:
      - elastic

  kibana:
    image: kibana:$ELASTIC_STACK_VERSION
    container_name: kibana
    ports:
      - target: 5601
        published: 5601
    depends_on:
      - elasticsearch
    networks:
      - elastic   

  logstash:
    image: logstash:$ELASTIC_STACK_VERSION
    container_name: logstash
    ports:
      - 5200:5200
    volumes: 
      - type: bind
        source: ./logstash_pipeline/
        target: /usr/share/logstash/pipeline
        read_only: true
    networks:
      - elastic           

volumes:
  es_data:
    driver: local

networks:
  elastic:
    name: elastic
    driver: bridge

为方便起见,在我的安装中,我没有配置安全。如果你需要为 Elasticsearch 设置安全的话,请参考我之前的文章 “Elasticsearch:使用 Docker compose 来一键部署 Elastic Stack 8.x”。

我们使用如下的命令来启动 Elastic Stack。在 docker-compose.yml 所在的目录中打入如下的命令:

$ pwd
/Users/liuxg/data/data-pipeline8/docker-elk
$ ls
docker-compose.yml logstash_pipeline
$ docker-compose up

 等所有的 Elastic Stack 运行起来后,我们再次通过如下的命令来进行查看:

docker ps
$ docker ps
CONTAINER ID   IMAGE                            COMMAND                  CREATED              STATUS              PORTS                                                  NAMES
3db5e4e6e23e   kibana:8.6.2                     "/bin/tini -- /usr/l…"   About a minute ago   Up About a minute   0.0.0.0:5601->5601/tcp                                 kibana
210b673dd89a   logstash:8.6.2                   "/usr/local/bin/dock…"   About a minute ago   Up About a minute   5044/tcp, 9600/tcp, 0.0.0.0:5200->5200/tcp             logstash
05c434edd823   elasticsearch:8.6.2              "/bin/tini -- /usr/l…"   About a minute ago   Up About a minute   0.0.0.0:9200->9200/tcp, 9300/tcp                       elasticsearch
de7453250529   hlebalbau/kafka-manager:stable   "/kafka-manager/bin/…"   51 minutes ago       Up 51 minutes       0.0.0.0:9000->9000/tcp                                 kakfa-manager
65eba68350f1   zookeeper                        "/docker-entrypoint.…"   51 minutes ago       Up 51 minutes       2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper
3394868b23e9   wurstmeister/kafka               "start-kafka.sh"         51 minutes ago       Up 51 minutes       0.0.0.0:9092->9092/tcp                                 kafka

我们可以看到 Elasticsearch 运用于 9000 端口,Kibana 运行于 5601 端口,而 Logstash 运行 5000 端口。 我们可以访问 Kibana 的端口地址 5601: 

 

运行 Nodejs 应用导入模拟数据

我们接下来建立一个 Nodejs 的应用来模拟一些数据。首先,我们需要安装如下的包:

npm install kafkajs uuid randomstring random-mobile

我们在根目录下打入如下的命令:

npm init -y
$ npm init -y
Wrote to /Users/liuxg/data/data-pipeline8/package.json:


  "dependencies": 
    "kafkajs": "^2.2.4"
  ,
  "name": "data-pipeline8",
  "description": "This is a sample code showing how to realize the following data pipeline:",
  "version": "1.0.0",
  "main": "kafka_producer.js",
  "devDependencies": ,
  "scripts": 
    "test": "echo \\"Error: no test specified\\" && exit 1"
  ,
  "repository": 
    "type": "git",
    "url": "git+https://github.com/liu-xiao-guo/data-pipeline8.git"
  ,
  "keywords": [],
  "author": "",
  "license": "ISC",
  "bugs": 
    "url": "https://github.com/liu-xiao-guo/data-pipeline8/issues"
  ,
  "homepage": "https://github.com/liu-xiao-guo/data-pipeline8#readme"

上述命令生成一个叫做 package.json 的文件。在以后安装的 packages,它也会自动添加到这个文件中。默认的设置显然不是我们想要的。我们需要对它做一些修改。

kafka_producer.js

// import  Kafka, logLevel  from "kafkajs";
const  Kafka  = require('kafkajs');
const logLevel = require("kafkajs");

// import  v4 as uuidv4  from "uuid";
const  v4: uuidv4  = require('uuid');

console.log(uuidv4());

const kafka = new Kafka(
  clientId: "random-producer",
  brokers: ["localhost:9092"],
  connectionTimeout: 3000,
);

var randomstring = require("randomstring");
var randomMobile = require("random-mobile");
const producer = kafka.producer();
const topic = "kafka_logstash";

const produce = async () => 
  await producer.connect();
  let i = 0;

  setInterval(async () => 
    var event = ;
    try 
      event = 
        globalId: uuidv4(),
        event: "USER-CREATED",
        data: 
          id: uuidv4(),
          firstName: randomstring.generate(8),
          lastName: randomstring.generate(6),
          country: "China",
          email: randomstring.generate(10) + "@gmail.com",
          phoneNumber: randomMobile(),
          city: "Hyderabad",
          createdAt: new Date(),
        ,
      ;

      await producer.send(
        topic,
        acks: 1,
        messages: [
          
            value: JSON.stringify(event),
          ,
        ],
      );

      // if the message is written successfully, log it and increment `i`
      console.log("writes: ", event);
      i++;

     catch (err) 
      console.error("could not write message " + err);
    
  , 5000);
;

produce().catch(console.log)

我们运行上面的 Nodejs 代码:

npm start

 我们接下来在 Kibana 中来查看索引 kafka_logstash:

GET kafka_logstash/_count

  "count": 103,
  "_shards": 
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  

我们可以看到文档的数值在不断地增加。我们可以查看文档:

很显然我们收到了数据。从上面的结果中,我们可以看出来是一些非结构化的数据。我们可以针对 Logstash 的 pipeline 进行修改:

kafka-elastic.conf

input 
    kafka 
       bootstrap_servers => "192.168.0.3:9092"
       topics => ["kafka_logstash"]
    


filter 
    json 
        source => "message"
    

    mutate 
      add_field => 
        "id" => "%[data][id]"
      
      add_field => 
        "firstName" => "%[data][firstName]"
      
      add_field => 
        "lastName" => "%[data][lastName]"
      
      add_field => 
        "city" => "%[data][city]"
      
      add_field => 
        "country" => "%[data][country]"
      
      add_field => 
        "email" => "%[data][email]"
      
      add_field => 
        "phoneNumber" => "%[data][phoneNumber]"
      
      add_field => 
        "createdAt" => "%[data][createdAt]"
      
      remove_field => ["data", "@version", "@timestamp", "message", "event", "globalId"]
      


output 
   elasticsearch 
      hosts => ["elasticsearch:9200"]
      index => "kafka_logstash"
      workers => 1
    

我们在 Kibana 中删除 kafka_logstash:

DELETE kafka_logstash

我们停止运行 Nodejs 应用。我们把运行 Elastic Stack 的 docker-compose 关掉,并再次重新启动它:

docker-compose down
docker-compose up

我们再次运行 Nodejs 应用:

 我们再次到 Kibana 中进行查看:

很显然,这次,我们看到结构化的输出文件。

以上是关于Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs的主要内容,如果未能解决你的问题,请参考以下文章

Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs

腾讯云Logstash实战4-使用Logstash消费kafka数据并写入到Elasticsearch

Logstash 2.3.4如何使用logstash-jdbc插件在Elasticsearch中加载嵌套文档

Logstash+elasticsearch+elastic+nignx

从 Logstash 在 Elasticsearch 上使用 geopoint

elasticsearch5.2.1使用logstash同步mysql