转:Java集合源码剖析HashMap源码剖析
Posted xuyatao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了转:Java集合源码剖析HashMap源码剖析相关的知识,希望对你有一定的参考价值。
转载请注明出处:http://blog.csdn.net/ns_code/article/details/36034955
您好,我正在参加CSDN博文大赛,如果您喜欢我的文章,希望您能帮我投一票,谢谢!
投票地址:http://vote.blog.csdn.net/Article/Details?articleid=35568011
HashMap简介
HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
HashMap是非线程安全的,只是用于单线程环境下,多线程环境下可以采用concurrent并发包下的concurrentHashMap。
HashMap 实现了Serializable接口,因此它支持序列化,实现了Cloneable接口,能被克隆。
HashMap源码剖析
HashMap的源码如下(加入了比较详细的注释):
- package java.util;
- import java.io.*;
- public class HashMap<K,V>
- extends AbstractMap<K,V>
- implements Map<K,V>, Cloneable, Serializable
- {
- // 默认的初始容量(容量为HashMap中槽的数目)是16,且实际容量必须是2的整数次幂。
- static final int DEFAULT_INITIAL_CAPACITY = 16;
- // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
- static final int MAXIMUM_CAPACITY = 1 << 30;
- // 默认加载因子为0.75
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
- // 存储数据的Entry数组,长度是2的幂。
- // HashMap采用链表法解决冲突,每一个Entry本质上是一个单向链表
- transient Entry[] table;
- // HashMap的底层数组中已用槽的数量
- transient int size;
- // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
- int threshold;
- // 加载因子实际大小
- final float loadFactor;
- // HashMap被改变的次数
- transient volatile int modCount;
- // 指定“容量大小”和“加载因子”的构造函数
- public HashMap(int initialCapacity, float loadFactor) {
- if (initialCapacity < 0)
- throw new IllegalArgumentException("Illegal initial capacity: " +
- initialCapacity);
- // HashMap的最大容量只能是MAXIMUM_CAPACITY
- if (initialCapacity > MAXIMUM_CAPACITY)
- initialCapacity = MAXIMUM_CAPACITY;
- //加载因此不能小于0
- if (loadFactor <= 0 || Float.isNaN(loadFactor))
- throw new IllegalArgumentException("Illegal load factor: " +
- loadFactor);
- // 找出“大于initialCapacity”的最小的2的幂
- int capacity = 1;
- while (capacity < initialCapacity)
- capacity <<= 1;
- // 设置“加载因子”
- this.loadFactor = loadFactor;
- // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
- threshold = (int)(capacity * loadFactor);
- // 创建Entry数组,用来保存数据
- table = new Entry[capacity];
- init();
- }
- // 指定“容量大小”的构造函数
- public HashMap(int initialCapacity) {
- this(initialCapacity, DEFAULT_LOAD_FACTOR);
- }
- // 默认构造函数。
- public HashMap() {
- // 设置“加载因子”为默认加载因子0.75
- this.loadFactor = DEFAULT_LOAD_FACTOR;
- // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
- threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
- // 创建Entry数组,用来保存数据
- table = new Entry[DEFAULT_INITIAL_CAPACITY];
- init();
- }
- // 包含“子Map”的构造函数
- public HashMap(Map<? extends K, ? extends V> m) {
- this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
- DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
- // 将m中的全部元素逐个添加到HashMap中
- putAllForCreate(m);
- }
- //求hash值的方法,重新计算hash值
- static int hash(int h) {
- h ^= (h >>> 20) ^ (h >>> 12);
- return h ^ (h >>> 7) ^ (h >>> 4);
- }
- // 返回h在数组中的索引值,这里用&代替取模,旨在提升效率
- // h & (length-1)保证返回值的小于length
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
- public int size() {
- return size;
- }
- public boolean isEmpty() {
- return size == 0;
- }
- // 获取key对应的value
- public V get(Object key) {
- if (key == null)
- return getForNullKey();
- // 获取key的hash值
- int hash = hash(key.hashCode());
- // 在“该hash值对应的链表”上查找“键值等于key”的元素
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- //判断key是否相同
- if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
- return e.value;
- }
- //没找到则返回null
- return null;
- }
- // 获取“key为null”的元素的值
- // HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
- private V getForNullKey() {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null)
- return e.value;
- }
- return null;
- }
- // HashMap是否包含key
- public boolean containsKey(Object key) {
- return getEntry(key) != null;
- }
- // 返回“键为key”的键值对
- final Entry<K,V> getEntry(Object key) {
- // 获取哈希值
- // HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值
- int hash = (key == null) ? 0 : hash(key.hashCode());
- // 在“该hash值对应的链表”上查找“键值等于key”的元素
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- }
- return null;
- }
- // 将“key-value”添加到HashMap中
- public V put(K key, V value) {
- // 若“key为null”,则将该键值对添加到table[0]中。
- if (key == null)
- return putForNullKey(value);
- // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
- int hash = hash(key.hashCode());
- int i = indexFor(hash, table.length);
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- // 若“该key”对应的键值对不存在,则将“key-value”添加到table中
- modCount++;
- //将key-value添加到table[i]处
- addEntry(hash, key, value, i);
- return null;
- }
- // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- // 如果没有存在key为null的键值对,则直接题阿见到table[0]处!
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
- // 创建HashMap对应的“添加方法”,
- // 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap
- // 而put()是对外提供的往HashMap中添加元素的方法。
- private void putForCreate(K key, V value) {
- int hash = (key == null) ? 0 : hash(key.hashCode());
- int i = indexFor(hash, table.length);
- // 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) {
- e.value = value;
- return;
- }
- }
- // 若该HashMap表中不存在“键值等于key”的元素,则将该key-value添加到HashMap中
- createEntry(hash, key, value, i);
- }
- // 将“m”中的全部元素都添加到HashMap中。
- // 该方法被内部的构造HashMap的方法所调用。
- private void putAllForCreate(Map<? extends K, ? extends V> m) {
- // 利用迭代器将元素逐个添加到HashMap中
- for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
- Map.Entry<? extends K, ? extends V> e = i.next();
- putForCreate(e.getKey(), e.getValue());
- }
- }
- // 重新调整HashMap的大小,newCapacity是调整后的容量
- void resize(int newCapacity) {
- Entry[] oldTable = table;
- int oldCapacity = oldTable.length;
- //如果就容量已经达到了最大值,则不能再扩容,直接返回
- if (oldCapacity == MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return;
- }
- // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
- // 然后,将“新HashMap”赋值给“旧HashMap”。
- Entry[] newTable = new Entry[newCapacity];
- transfer(newTable);
- table = newTable;
- threshold = (int)(newCapacity * loadFactor);
- }
- // 将HashMap中的全部元素都添加到newTable中
- void transfer(Entry[] newTable) {
- Entry[] src = table;
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) {
- Entry<K,V> e = src[j];
- if (e != null) {
- src[j] = null;
- do {
- Entry<K,V> next = e.next;
- int i = indexFor(e.hash, newCapacity);
- e.next = newTable[i];
- newTable[i] = e;
- e = next;
- } while (e != null);
- }
- }
- }
- // 将"m"的全部元素都添加到HashMap中
- public void putAll(Map<? extends K, ? extends V> m) {
- // 有效性判断
- int numKeysToBeAdded = m.size();
- if (numKeysToBeAdded == 0)
- return;
- // 计算容量是否足够,
- // 若“当前阀值容量 < 需要的容量”,则将容量x2。
- if (numKeysToBeAdded > threshold) {
- int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
- if (targetCapacity > MAXIMUM_CAPACITY)
- targetCapacity = MAXIMUM_CAPACITY;
- int newCapacity = table.length;
- while (newCapacity < targetCapacity)
- newCapacity <<= 1;
- if (newCapacity > table.length)
- resize(newCapacity);
- }
- // 通过迭代器,将“m”中的元素逐个添加到HashMap中。
- for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
- Map.Entry<? extends K, ? extends V> e = i.next();
- put(e.getKey(), e.getValue());
- }
- }
- // 删除“键为key”元素
- public V remove(Object key) {
- Entry<K,V> e = removeEntryForKey(key);
- return (e == null ? null : e.value);
- }
- // 删除“键为key”的元素
- final Entry<K,V> removeEntryForKey(Object key) {
- // 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算
- int hash = (key == null) ? 0 : hash(key.hashCode());
- int i = indexFor(hash, table.length);
- Entry<K,V> prev = table[i];
- Entry<K,V> e = prev;
- // 删除链表中“键为key”的元素
- // 本质是“删除单向链表中的节点”
- while (e != null) {
- Entry<K,V> next = e.next;
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) {
- modCount++;
- size--;
- if (prev == e)
- table[i] = next;
- else
- prev.next = next;
- e.recordRemoval(this);
- return e;
- }
- prev = e;
- e = next;
- }
- return e;
- }
- // 删除“键值对”
- final Entry<K,V> removeMapping(Object o) {
- if (!(o instanceof Map.Entry))
- return null;
- Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
- Object key = entry.getKey();
- int hash = (key == null) ? 0 : hash(key.hashCode());
- int i = indexFor(hash, table.length);
- Entry<K,V> prev = table[i];
- Entry<K,V> e = prev;
- // 删除链表中的“键值对e”
- // 本质是“删除单向链表中的节点”
- while (e != null) {
- Entry<K,V> next = e.next;
- if (e.hash == hash && e.equals(entry)) {
- modCount++;
- size--;
- if (prev == e)
- table[i] = next;
- else
- prev.next = next;
- e.recordRemoval(this);
- return e;
- }
- prev = e;
- e = next;
- }
- return e;
- }
- // 清空HashMap,将所有的元素设为null
- public void clear() {
- modCount++;
- Entry[] tab = table;
- for (int i = 0; i < tab.length; i++)
- tab[i] = null;
- size = 0;
- }
- // 是否包含“值为value”的元素
- public boolean containsValue(Object value) {
- // 若“value为null”,则调用containsNullValue()查找
- if (value == null)
- return containsNullValue();
- // 若“value不为null”,则查找HashMap中是否有值为value的节点。
- Entry[] tab = table;
- for (int i = 0; i < tab.length ; i++)
- for (Entry e = tab[i] ; e != null ; e = e.next)
- if (value.equals(e.value))
- return true;
- return false;
- }
- // 是否包含null值
- private boolean containsNullValue() {
- Entry[] tab = table;
- for (int i = 0; i < tab.length ; i++)
- for (Entry e = tab[i] ; e != null ; e = e.next)
- if (e.value == null)
- return true;
- return false;
- }
- // 克隆一个HashMap,并返回Object对象
- public Object clone() {
- HashMap<K,V> result = null;
- try {
- result = (HashMap<K,V>)super.clone();
- } catch (CloneNotSupportedException e) {
- // assert false;
- }
- result.table = new Entry[table.length];
- result.entrySet = null;
- result.modCount = 0;
- result.size = 0;
- result.init();
- // 调用putAllForCreate()将全部元素添加到HashMap中
- result.putAllForCreate(this);
- return result;
- }
- // Entry是单向链表。
- // 它是 “HashMap链式存储法”对应的链表。
- // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- // 指向下一个节点
- Entry<K,V> next;
- final int hash;
- // 构造函数。
- // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
- Entry(int h, K k, V v, Entry<K,V> n) {
- value = v;
- next = n;
- key = k;
- hash = h;
- }
- public final K getKey() {
- return key;
- }
- public final V getValue() {
- return value;
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- // 判断两个Entry是否相等
- // 若两个Entry的“key”和“value”都相等,则返回true。
- // 否则,返回false
- public final boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- Object k1 = getKey();
- Object k2 = e.getKey();
- if (k1 == k2 || (k1 != null && k1.equals(k2))) {
- Object v1 = getValue();
- Object v2 = e.getValue();
- if (v1 == v2 || (v1 != null && v1.equals(v2)))
- return true;
- }
- return false;
- }
- // 实现hashCode()
- public final int hashCode() {
- return (key==null ? 0 : key.hashCode()) ^
- (value==null ? 0 : value.hashCode());
- }
- public final String toString() {
- return getKey() + "=" + getValue();
- }
- // 当向HashMap中添加元素时,绘调用recordAccess()。
- // 这里不做任何处理
- void recordAccess(HashMap<K,V> m) {
- }
- // 当从HashMap中删除元素时,绘调用recordRemoval()。
- // 这里不做任何处理
- void recordRemoval(HashMap<K,V> m) {
- }
- }
- // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
- void addEntry(int hash, K key, V value, int bucketIndex) {
- // 保存“bucketIndex”位置的值到“e”中
- Entry<K,V> e = table[bucketIndex];
- // 设置“bucketIndex”位置的元素为“新Entry”,
- // 设置“e”为“新Entry的下一个节点”
- table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
- // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
- if (size++ >= threshold)
- resize(2 * table.length);
- }
- // 创建Entry。将“key-value”插入指定位置。
- void createEntry(int hash, K key, V value, int bucketIndex) {
- // 保存“bucketIndex”位置的值到“e”中
- Entry<K,V> e = table[bucketIndex];
- // 设置“bucketIndex”位置的元素为“新Entry”,
- // 设置“e”为“新Entry的下一个节点”
- table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
- size++;
- }
- // HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
- // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
- private abstract class HashIterator<E> implements Iterator<E> {
- // 下一个元素
- Entry<K,V> next;
- // expectedModCount用于实现fast-fail机制。
- int expectedModCount;
- // 当前索引
- int index;
- // 当前元素
- Entry<K,V> current;
- HashIterator() {
- expectedModCount = modCount;
- if (size > 0) { // advance to first entry
- Entry[] t = table;
- // 将next指向table中第一个不为null的元素。
- // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
- while (index < t.length && (next = t[index++]) == null)
- ;
- }
- }
- public final boolean hasNext() {
- return next != null;
- }
- // 获取下一个元素
- final Entry<K,V> nextEntry() {
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
- Entry<K,V> e = next;
- if (e == null)
- throw new NoSuchElementException();
- // 注意!!!
- // 一个Entry就是一个单向链表
- // 若该Entry的下一个节点不为空,就将next指向下一个节点;
- // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
- if ((next = e.next) == null) {
- Entry[] t = table;
- while (index < t.length && (next = t[index++]) == null)
- ;
- }
- current = e;
- return e;
- }
- // 删除当前元素
- public void remove() {
- if (current == null)
- throw new IllegalStateException();
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
- Object k = current.key;
- current = null;
- HashMap.this.removeEntryForKey(k);
- expectedModCount = modCount;
- }
- }
- // value的迭代器
- private final class ValueIterator extends HashIterator<V> {
- public V next() {
- return nextEntry().value;
- }
- }
- // key的迭代器
- private final class KeyIterator extends HashIterator<K> {
- public K next() {
- return nextEntry().getKey();
- }
- }
- // Entry的迭代器
- private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
- public Map.Entry<K,V> next() {
- return nextEntry();
- }
- }
- // 返回一个“key迭代器”
- Iterator<K> newKeyIterator() {
- return new KeyIterator();
- }
- // 返回一个“value迭代器”
- Iterator<V> newValueIterator() {
- return new ValueIterator();
- }
- // 返回一个“entry迭代器”
- Iterator<Map.Entry<K,V>> newEntryIterator() {
- return new EntryIterator();
- }
- // HashMap的Entry对应的集合
- private transient Set<Map.Entry<K,V>> entrySet = null;
- // 返回“key的集合”,实际上返回一个“KeySet对象”
- public Set<K> keySet() {
- Set<K> ks = keySet;
- return (ks != null ? ks : (keySet = new KeySet()));
- }
- // Key对应的集合
- // KeySet继承于AbstractSet,说明该集合中没有重复的Key。
- private final class KeySet extends AbstractSet<K> {
- public Iterator<K> iterator() {
- return newKeyIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean remove(Object o) {
- return HashMap.this.removeEntryForKey(o) != null;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- // 返回“value集合”,实际上返回的是一个Values对象
- public Collection<V> values() {
- Collection<V> vs = values;
- return (vs != null ? vs : (values = new Values()));
- }
- // “value集合”
- // Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
- // Values中的元素能够重复。因为不同的key可以指向相同的value。
- private final class Values extends AbstractCollection<V> {
- public Iterator<V> iterator() {
- return newValueIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsValue(o);
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- // 返回“HashMap的Entry集合”
- public Set<Map.Entry<K,V>> entrySet() {
- return entrySet0();
- }
- // 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
- private Set<Map.Entry<K,V>> entrySet0() {
- Set<Map.Entry<K,V>> es = entrySet;
- return es != null ? es : (entrySet = new EntrySet());
- }
- // EntrySet对应的集合
- // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
- private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
- public Iterator<Map.Entry<K,V>> iterator() {
- return newEntryIterator();
- }
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry<K,V> e = (Map.Entry<K,V>) o;
- Entry<K,V> candidate = getEntry(e.getKey());
- return candidate != null && candidate.equals(e);
- }
- public boolean remove(Object o) {
- return removeMapping(o) != null;
- }
- public int size() {
- return size;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- // java.io.Serializable的写入函数
- // 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中
- private void writeObject(java.io.ObjectOutputStream s)
- throws IOException
- {
- Iterator<Map.Entry<K,V>> i =
- (size > 0) ? entrySet0().iterator() : null;
- // Write out the threshold, loadfactor, and any hidden stuff
- s.defaultWriteObject();
- // Write out number of buckets
- s.writeInt(table.length);
- // Write out size (number of Mappings)
- s.writeInt(size);
- // Write out keys and values (alternating)
- if (i != null) {
- while (i.hasNext()) {
- Map.Entry<K,V> e = i.next();
- s.writeObject(e.getKey());
- s.writeObject(e.getValue());
- }
- }
- }
- private static final long serialVersionUID = 362498820763181265L;
- // java.io.Serializable的读取函数:根据写入方式读出
- // 将HashMap的“总的容量,实际容量,所有的Entry”依次读出
- private void readObject(java.io.ObjectInputStream s)
- throws IOException, ClassNotFoundException
- {
- // Read in the threshold, loadfactor, and any hidden stuff
- s.defaultReadObject();
- // Read in number of buckets and allocate the bucket array;
- int numBuckets = s.readInt();
- table = new Entry[numBuckets];
- init(); // Give subclass a chance to do its thing.
- // Read in size (number of Mappings)
- int size = s.readInt();
- // Read the keys and values, and put the mappings in the HashMap
- for (int i=0; i<size; i++) {
- K key = (K) s.readObject();
- V value = (V) s.readObject();
- putForCreate(key, value);
- }
- }
- // 返回“HashMap总的容量”
- int capacity() { return table.length; }
- // 返回“HashMap的加载因子”
- float loadFactor() { return loadFactor; }
- }
几点总结
1、首先要清楚HashMap的存储结构,如下图所示:
图中,紫色部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
2、首先看链表中节点的数据结构:
- // Entry是单向链表。
- // 它是 “HashMap链式存储法”对应的链表。
- // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- // 指向下一个节点
- Entry<K,V> next;
- final int hash;
- // 构造函数。
- // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
- Entry(int h, K k, V v, Entry<K,V> n) {
- value = v;
- next = n;
- key = k;
- hash = h;
- }
- public final K getKey() {
- return key;
- }
- public final V getValue() {
- return value;
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- // 判断两个Entry是否相等
- // 若两个Entry的“key”和“value”都相等,则返回true。
- // 否则,返回false
- public final boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- Object k1 = getKey();
- Object k2 = e.getKey();
- if (k1 == k2 || (k1 != null && k1.equals(k2))) {
- Object v1 = getValue();
- Object v2 = e.getValue();
- if (v1 == v2 || (v1 != null && v1.equals(v2)))
- return true;
- }
- return false;
- }
- // 实现hashCode()
- public final int hashCode() {
- return (key==null ? 0 : key.hashCode()) ^
- (value==null ? 0 : value.hashCode());
- }
- public final String toString() {
- return getKey() + "=" + getValue();
- }
- // 当向HashMap中添加元素时,绘调用recordAccess()。
- // 这里不做任何处理
- void recordAccess(HashMap<K,V> m) {
- }
- // 当从HashMap中删除元素时,绘调用recordRemoval()。
- // 这里不做任何处理
- void recordRemoval(HashMap<K,V> m) {
- }
- }
它的结构元素除了key、value、hash外,还有next,next指向下一个节点。另外,这里覆写了equals和hashCode方法来保证键值对的独一无二。
3、HashMap共有四个构造方法。构造方法中提到了两个很重要的参数:初始容量和加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中槽的数量(即哈希数组的长度),初始容量是创建哈希表时的容量(从构造函数中可以看出,如果不指明,则默认为16),加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 resize 操作(即扩容)。
下面说下加载因子,如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。
另外,无论我们指定的容量为多少,构造方法都会将实际容量设为不小于指定容量的2的次方的一个数,且最大值不能超过2的30次方
4、HashMap中key和value都允许为null。
5、要重点分析下HashMap中用的最多的两个方法put和get。先从比较简单的get方法着手,源码如下:
- // 获取key对应的value
- public V get(Object key) {
- if (key == null)
- return getForNullKey();
- // 获取key的hash值
- int hash = hash(key.hashCode());
- // 在“该hash值对应的链表”上查找“键值等于key”的元素
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- /判断key是否相同
- if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
- return e.value;
- }
- 没找到则返回null
- return null;
- }
- // 获取“key为null”的元素的值
- // HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
- private V getForNullKey() {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null)
- return e.value;
- }
- return null;
- }
首先,如果key为null,则直接从哈希表的第一个位置table[0]对应的链表上查找。记住,key为null的键值对永远都放在以table[0]为头结点的链表中,当然不一定是存放在头结点table[0]中。
如果key不为null,则先求的key的hash值,根据hash值找到在table中的索引,在该索引对应的单链表中查找是否有键值对的key与目标key相等,有就返回对应的value,没有则返回null。
put方法稍微复杂些,代码如下:
- // 将“key-value”添加到HashMap中
- public V put(K key, V value) {
- // 若“key为null”,则将该键值对添加到table[0]中。
- if (key == null)
- return putForNullKey(value);
- // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
- int hash = hash(key.hashCode());
- int i = indexFor(hash, table.length);
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- // 若“该key”对应的键值对不存在,则将“key-value”添加到table中
- modCount++;
- //将key-value添加到table[i]处
- addEntry(hash, key, value, i);
- return null;
- }
如果key为null,则将其添加到table[0]对应的链表中,putForNullKey的源码如下:
- // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- // 如果没有存在key为null的键值对,则直接题阿见到table[0]处!
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
如果key不为null,则同样先求出key的hash值,根据hash值得出在table中的索引,而后遍历对应的单链表,如果单链表中存在与目标key相等的键值对,则将新的value覆盖旧的value,比将旧的value返回,如果找不到与目标key相等的键值对,或者该单链表为空,则将该键值对插入到改单链表的头结点位置(每次新插入的节点都是放在头结点的位置),该操作是有addEntry方法实现的,它的源码如下:
- // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
- void addEntry(int hash, K key, V value, int bucketIndex) {
- // 保存“bucketIndex”位置的值到“e”中
- Entry<K,V> e = table[bucketIndex];
- // 设置“bucketIndex”位置的元素为“新Entry”,
- // 设置“e”为“新Entry的下一个节点”
- table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
- // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
- if (size++ >= threshold)
- resize(2 * table.length);
- }
注意这里倒数第三行的构造方法,将key-value键值对赋给table[bucketIndex],并将其next指向元素e,这便将key-value放到了头结点中,并将之前的头结点接在了它的后面。该方法也说明,每次put键值对的时候,总是将新的该键值对放在table[bucketIndex]处(即头结点处)。
两外注意最后两行代码,每次加入键值对时,都要判断当前已用的槽的数目是否大于等于阀值(容量*加载因子),如果大于等于,则进行扩容,将容量扩为原来容量的2倍。
6、关于扩容。上面我们看到了扩容的方法,resize方法,它的源码如下:
- // 重新调整HashMap的大小,newCapacity是调整后的单位
- void resize(int newCapacity) {
- Entry[] oldTable = table;
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return;
- }
- // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
- // 然后,将“新HashMap”赋值给“旧HashMap”。
- Entry[] newTable = new Entry[newCapacity];
- transfer(newTable);
- table = newTable;
- threshold = (int)(newCapacity * loadFactor);
- }
很明显,是新建了一个HashMap的底层数组,而后调用transfer方法,将就HashMap的全部元素添加到新的HashMap中(要重新计算元素在新的数组中的索引位置)。transfer方法的源码如下:
- // 将HashMap中的全部元素都添加到newTable中
- void transfer(Entry[] newTable) {
- Entry[] src = table;
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) {
- Entry<K,V> e = src[j];
- if (e != null) {
- src[j] = null;
- do {
- Entry<K,V> next = e.next;
- int i = indexFor(e.hash, newCapacity);
- e.next = newTable[i];
- newTable[i] = e;
- e = next;
- } while (e != null);
- }
- }
- }
很明显,扩容是一个相当耗时的操作,因为它需要重新计算这些元素在新的数组中的位置并进行复制处理。因此,我们在用HashMap的时,最好能提前预估下HashMap中元素的个数,这样有助于提高HashMap的性能。
7、注意containsKey方法和containsValue方法。前者直接可以通过key的哈希值将搜索范围定位到指定索引对应的链表,而后者要对哈希数组的每个链表进行搜索。
8、我们重点来分析下求hash值和索引值的方法,这两个方法便是HashMap设计的最为核心的部分,二者结合能保证哈希表中的元素尽可能均匀地散列。
计算哈希值的方法如下:
- static int hash(int h) {
- h ^= (h >>> 20) ^ (h >>> 12);
- return h ^ (h >>> 7) ^ (h >>> 4);
- }
它只是一个数学公式,IDK这样设计对hash值的计算,自然有它的好处,至于为什么这样设计,我们这里不去追究,只要明白一点,用的位的操作使hash值的计算效率很高。
由hash值找到对应索引的方法如下:
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
这个我们要重点说下,我们一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。 接下来,我们分析下为什么哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。
以上是关于转:Java集合源码剖析HashMap源码剖析的主要内容,如果未能解决你的问题,请参考以下文章