用Java实现MVPtree——MVPtree核心算法代码的搭建
Posted DGUT_FLY
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用Java实现MVPtree——MVPtree核心算法代码的搭建相关的知识,希望对你有一定的参考价值。
项目需要,需要把MVPtree这种冷门的数据结构写入Java,然网上没有成形的Java实现,虽说C++看惯了不过对C++实现复杂结构也是看得蒙蔽,幸好客户给了个github上job什么的人用Java写的VPtree,大体结构可以嵌入MVPtree。
对于MVPtree的其他信息请左转百度= =本文只讲述算法实现。
点查找树结构主要需解决的问题有2个:如何减少非必要点的搜索,以及如何减少距离计算次数。前者的解决方法比较容易想到,把点集分割为左右对称的两半长方形,或者脑洞大点的,通过距离切分(效率很高,因为所有查询都是基于点距离的)成为圆和圆环。后者适用面不是很广,优化思路通常是预先计算与基准点的距离,查询点时筛点。
VPtree就是使用距离划分点集的例子。每个结点一个点集,随意定个点作为基准点,然后把点集根据与基准点距离分成数量相等的2个子集,这2个子集再分别进入此结点的子结点,用点查找出点集的过程如出一辙,但是没有对第2点进行优化,这个结构适合于距离函数是曼哈顿距离或者欧几里得距离的情况。
MVPtree继承了VPtree用距离划分的特点,只不过一个结点会划分4个点集,同时通过path数组限制距离函数运行次数。划分为4个点集而不是2个点集,可以分割得细一些,减少无效点;使用一定数量的基准点限制,可以在查询频繁的情况下减少距离计算次数,并且这些基准点通常被切分得很散,大片大片的无效区域被排除了,效果拔群。这个结构适合于距离函数是计算次数过高的切比雪夫函数之流。
接下来就是代码的实现了。
MVPtree与VPtree的点有个不同之处,就是MVPtree的点还附上了与基准点的距离数组,这里就需要使用特别的点数据结构:MVPtree用点
核心代码如下:
public class MVPTreePoint<P> { private ArrayList<Double> path; private P point; private final int maxLevel; public MVPTreePoint(final P point, final int maxLevel) { this.point = point; this.maxLevel = maxLevel; this.path = new ArrayList<>(); } public void addDistanceToSelf(final MVPTreePoint<P> vantagePointElement, final DistanceFunction<P> distanceFunction) { if(this.path.size() < this.maxLevel) this.path.add(distanceFunction.getDistance(this.point, vantagePointElement.point)); } public void addDistanceToSelf(final P vantagePoint, final DistanceFunction<P> distanceFunction) { if(this.path.size() < this.maxLevel) this.path.add(distanceFunction.getDistance(this.point, vantagePoint)); } public void addDistanceToSelf(final double distance) { if(this.path.size() < this.maxLevel) { this.path.add(distance); } } public void removeDistanceToSelf(final int position) { if(position < this.path.size()) { this.path.remove(position); } } public double getDistanceToSelf(int i) { return this.path.get(i); } public int size() { return this.path.size(); } public void clearPath() { this.path.clear(); } public P getPoint() { return this.point; } @SuppressWarnings("unchecked") public boolean equals(Object o){ MVPTreePoint<P> t = (MVPTreePoint<P>) o; return this.point.equals(t.point); } }
把距离数组写到点类上而不是集成到树结点类上,结构会清晰一些,并且从点里取出距离也方便。
MVPtree与VPtree有好多不同的地方,但是好多都只是改一下类名,把P,E改成MVPTreePoint<P>,MVPTreePoint<E>,这里主讲核心算法——初始化树和点查询。
初始化MVPtree不仅要多选出一个基准点,多切分2次数组,还要把基准点到每个点的距离都分别储存起来。
capacity就是叶子结点的容量,要设中间一些,根据数据规模定吧。
原论文把基准点从点集取出来放到单独的位置上,但是实际编写程序时,把基准点仅仅当作一个基准点,基准点还是作为点集的一部分初始化。这样,数据结构仅仅是多出quantityOfPoint/capacity个点,但是程序编写方便了很多。
public MVPTreeNode( final Collection<MVPTreePoint<E>> pointNodes, final DistanceFunction<P> distanceFunction, final MVPThresholdSelectionStrategy<P, E> thresholdSelectionStrategy, final int capacity, final int maxLevel) { if (capacity < 1) { throw new IllegalArgumentException("Capacity must be positive."); } if (pointNodes.isEmpty()) { throw new IllegalArgumentException( "Cannot create a MVPTreeNode with an empty list of points."); } this.capacity = capacity; this.maxLevel = maxLevel; this.distanceFunction = distanceFunction; this.thresholdSelectionStrategy = thresholdSelectionStrategy; this.pointNodes = new ArrayList<>(pointNodes); this.children = new MVPTreeNode[2][2]; this.vantagePoint = (E[]) new Object[2]; this.secondThreshold = new double[2]; this.anneal(); } protected void anneal() { if (this.pointNodes == null) { int childrenSize[][] = new int[2][2]; for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { childrenSize[i][j] = this.children[i][j].size(); } } if (childrenSize[0][0] == 0 || childrenSize[0][1] == 0 || childrenSize[1][0] == 0 || childrenSize[1][1] == 0) { // One of the child nodes has become empty, and needs to be // pruned. this.pointNodes = new ArrayList<>(childrenSize[0][0] + childrenSize[0][1] + childrenSize[1][0] + childrenSize[1][1]); this.addAllPointsToCollection(this.pointNodes); for (MVPTreePoint<E> pointNode : this.pointNodes) { pointNode.clearPath(); } for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { this.children[i][j] = null; } } this.anneal(); } else { for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { this.children[i][j].anneal(); } } } } else { int firstVantagePointIndex = new Random().nextInt(this.pointNodes .size()); this.vantagePoint[0] = this.pointNodes.get(firstVantagePointIndex) .getPoint(); this.firstThreshold = this.thresholdSelectionStrategy .selectThreshold(this.pointNodes, this.vantagePoint[0], this.distanceFunction); int firstIndexPastThreshold; try { firstIndexPastThreshold = MVPTreeNode.partitionPoints( this.pointNodes, this.vantagePoint[0], this.firstThreshold, this.distanceFunction); } catch (final PartitionException e) { this.storeInOneNode(); return; } if (this.pointNodes.size() > this.capacity) { List<MVPTreePoint<E>> subTreeList[] = new List[2]; subTreeList[0] = this.pointNodes.subList(0, firstIndexPastThreshold); subTreeList[1] = this.pointNodes.subList( firstIndexPastThreshold, this.pointNodes.size()); // if points can be divided into 2 parts, find second vantage // point and try to split point array int secondVantagePointIndex = new Random() .nextInt(subTreeList[1].size()); this.vantagePoint[1] = subTreeList[1].get( secondVantagePointIndex).getPoint(); int splitPosition[] = new int[2]; for (int i = 0; i < 2; i++) { this.secondThreshold[i] = this.thresholdSelectionStrategy .selectThreshold(subTreeList[i], this.vantagePoint[1], this.distanceFunction); try { splitPosition[i] = MVPTreeNode.partitionPoints( subTreeList[i], this.vantagePoint[1], this.secondThreshold[i], this.distanceFunction); } catch (final PartitionException e) { this.storeInOneNode(); return; } } for (MVPTreePoint<E> pointNode : this.pointNodes) { pointNode.addDistanceToSelf(this.distanceFunction .getDistance(pointNode.getPoint(), this.vantagePoint[0])); pointNode.addDistanceToSelf(this.distanceFunction .getDistance(pointNode.getPoint(), this.vantagePoint[1])); } for (int i = 0; i < 2; i++) { this.children[i][0] = new MVPTreeNode<>( subTreeList[i].subList(0, splitPosition[i]), this.distanceFunction, this.thresholdSelectionStrategy, this.capacity, this.maxLevel); this.children[i][1] = new MVPTreeNode<>( subTreeList[i].subList(splitPosition[i], subTreeList[i].size()), this.distanceFunction, this.thresholdSelectionStrategy, this.capacity, this.maxLevel); } this.pointNodes = null; } else { this.storeInOneNode(); } } } private void storeInOneNode() { int maxIndex = 0; double maxDistance = this.distanceFunction.getDistance(this.pointNodes .get(0).getPoint(), this.vantagePoint[0]); for (int i = 1; i < this.pointNodes.size(); i++) { double curDistance = this.distanceFunction.getDistance( this.pointNodes.get(i).getPoint(), this.vantagePoint[0]); if (maxDistance < curDistance) { maxDistance = curDistance; maxIndex = i; } } this.vantagePoint[1] = this.pointNodes.get(maxIndex).getPoint(); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { this.children[i][j] = null; } } }
原作者给出了2种查询方式:找离查询点前k近点和找离查询点不远于u点。
找离查询点前k点的算法可以沿用查询VPtree时的做法,先查找查询点所在的子结点,再查找其他子结点,注意要先判定收集者是否装满(没装满的话,不管是啥点都直接塞),再判定收集者与查询点的最远距离(对第二种查找方式来说是固定距离)是否小于点/点集与查询点的最近距离(在树结点和叶子结点都有用处)。
public void collectNearestNeighbors( final NearestNeighborCollector<P, E> collector, int depth) { if (this.pointNodes == null) { // O1-Q final double distanceFromFirstVantagePointToQueryPoint = this.distanceFunction .getDistance(this.vantagePoint[0], collector.getQueryPoint().getPoint()); // O2-Q final double distanceFromSecondVantagePointToQueryPoint = this.distanceFunction .getDistance(this.vantagePoint[1], collector.getQueryPoint().getPoint()); collector.getQueryPoint().addDistanceToSelf( distanceFromFirstVantagePointToQueryPoint); collector.getQueryPoint().addDistanceToSelf( distanceFromSecondVantagePointToQueryPoint); final MVPTreeNode<P, E> index = this .getChildNodeForPoint(collector.getQueryPoint().getPoint()); index.collectNearestNeighbors(collector, depth + 1); // O1-Q - O1-S1 double basicDistance = distanceFromFirstVantagePointToQueryPoint - this.firstThreshold; for(int i = 0;i < 2;i ++){ if (!collector.isFull() || basicDistance <= collector.getRadius()) { // O2-Q - O2-S2 double touchDistance = distanceFromSecondVantagePointToQueryPoint - this.secondThreshold[i]; for(int j = 0;j < 2;j ++){ if (index != this.children[i][j] && (!collector.isFull() || touchDistance <= collector.getRadius())) { this.children[i][j].collectNearestNeighbors(collector, depth + 1); } touchDistance *= -1; } } basicDistance *= -1; } collector.getQueryPoint().removeDistanceToSelf(depth + depth + 1); collector.getQueryPoint().removeDistanceToSelf(depth + depth); } else { for (final MVPTreePoint<E> pointNode : this.pointNodes) { if(!collector.isFull() || this.isAbleToInsert(collector.getRadius(), collector.getQueryPoint(), pointNode)) { collector.offerPoint(pointNode.getPoint()); } } } }
找离查询点不远于u点算法就是论文里讲述的算法,执行步骤与收集第k近有相同之处,不同在于限定距离是固定值,且任何时候都必须判定
public void collectAllWithinDistance(final MVPTreePoint<P> queryPoint, final double maxDistance, final Collection<E> collection, int depth) { if (this.pointNodes == null) { final double distanceFromFirstVantagePointToQueryPoint = this.distanceFunction .getDistance(this.vantagePoint[0], queryPoint.getPoint()); final double distanceFromSecondVantagePointToQueryPoint = this.distanceFunction .getDistance(this.vantagePoint[1], queryPoint.getPoint()); queryPoint .addDistanceToSelf(distanceFromFirstVantagePointToQueryPoint); queryPoint .addDistanceToSelf(distanceFromSecondVantagePointToQueryPoint); // We want to search any of this node‘s children that intersect with // the query region if (distanceFromFirstVantagePointToQueryPoint <= this.firstThreshold + maxDistance) { if (distanceFromSecondVantagePointToQueryPoint <= this.secondThreshold[0] + maxDistance) { this.children[0][0].collectAllWithinDistance(queryPoint, maxDistance, collection, depth + 1); } if (distanceFromSecondVantagePointToQueryPoint + maxDistance >= this.secondThreshold[0]) { this.children[0][1].collectAllWithinDistance(queryPoint, maxDistance, collection, depth + 1); } } if (distanceFromFirstVantagePointToQueryPoint + maxDistance >= this.firstThreshold) { if (distanceFromSecondVantagePointToQueryPoint <= this.secondThreshold[1] + maxDistance) { this.children[1][0].collectAllWithinDistance(queryPoint, maxDistance, collection, depth + 1); } if (distanceFromSecondVantagePointToQueryPoint + maxDistance >= this.secondThreshold[1]) { this.children[1][1].collectAllWithinDistance(queryPoint, maxDistance, collection, depth + 1); } } queryPoint.removeDistanceToSelf(depth + depth + 1); queryPoint.removeDistanceToSelf(depth + depth); } else { for (MVPTreePoint<E> pointNode : pointNodes) { if (this.isAbleToInsert(maxDistance, queryPoint, pointNode)) collection.add(pointNode.getPoint()); } } }
这两种查询方式都需要比较预先计算的距离,把这种计算合为一个函数:
public boolean isAbleToInsert(double limitDistance, MVPTreePoint<P> queryPoint, MVPTreePoint<E> pointNode) { for (int i = 0; i < queryPoint.size(); i++) { double disOffset = queryPoint.getDistanceToSelf(i) - pointNode.getDistanceToSelf(i); if (Math.abs(disOffset) > limitDistance) { return false; } } return this.distanceFunction.getDistance(pointNode.getPoint(), queryPoint.getPoint()) <= limitDistance; }
其他函数也需要修改,但是没有像这3个函数一样大幅度的修改结构。
以上是关于用Java实现MVPtree——MVPtree核心算法代码的搭建的主要内容,如果未能解决你的问题,请参考以下文章