Java 加解密技术系列之 DES
Posted claireyuancy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java 加解密技术系列之 DES相关的知识,希望对你有一定的参考价值。
序
前几篇文章讲的都是单向加密算法。当中涉及到了 BASE64、MD5、SHA、HMAC 等几个比較常见的加解密算法。
这篇文章,以及后面几篇。打算介绍几个对称加密算法。比方:DES、3DES(TripleDES)、AES 等。那么,这篇文章主要是对 DES 大概讲一下。
背景
在讨论 DES 之前。首先了解一下什么是对称加密算法吧。对于对称加密算法,他应用的时间比較早。技术相对来说比較成熟,在对称加密算法中。数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文。则须要使用加密用过的密钥及同样算法的逆算法对密文进行解密,才干使其恢复成可读明文。
在对称加密算法中,使用的密钥仅仅有一个。发收信两方都使用这个密钥对数据进行加密和解密。这就要求解密方事先必须知道加密密钥。
对称加密算法的特点是算法公开、计算量小。不足之处是,交易两方都使用相同钥匙,安全性得不到保证。
概念
那么,什么是 DES?他是怎么来的?相信非常多人都非常感兴趣。由于曾经在开发的时候,对进度的要求比較严,非常多时候根本就没有时间来了解这些东西。
因此,今天专门来研究研究这个东西。
DES,全称为“Data Encryption Standard”,中文名为“数据加密标准”。是一种使用密钥加密的块算法。DES 算法为password体制中的对称password体制。又被称为美国数据加密标准。是 1972 年美国 IBM 公司研制的对称password体制加密算法。
明文按 64 位进行分组,密钥长 64 位,密钥其实是 56 位參与 DES 运算(第8、16、24、32、40、48、56、64 位是校验位, 使得每一个密钥都有奇数个 1)分组后的明文组和 56 位的密钥按位替代或交换的方法形成密文组的加密方法。
基本原理
入口參数有三个:key、data、mode。key 为加密解密使用的密钥,data 为加密 解密的数据。mode 为其工作模式。当模式为加密模式时,明文依照 64 位进行分组。形成明文组。key 用于对数据加密,当模式为解密模式时。key 用于对数据解密。
实际运用中,密钥仅仅用到了 64 位中的 56 位,这样才具有高的安全性。
主要流程
DES 算法把 64 位的明文输入块变为 64 位的密文输出块。它所使用的密钥也是 64 位。其算法主要分为两步:
- 初始置换
其功能是把输入的 64 位数据块按位又一次组合,并把输出分为 L0、R0 两部分。每部分各长 32 位,其置换规则为将输入的第 58 位换到第一位,第 50 位换到第 2 位 …… 依此类推,最后一位是原来的第 7 位。L0、R0 则是换位输出后的两部分。L0 是输出的左 32 位,R0 是右 32 位,例:设置换前的输入值为 D1 D2 D3 …… D64,则经过初始置换后的结果为:L0 = D58 D50 …… D8;R0 = D57
D49 …… D7。
- 逆置换
经过 16 次迭代运算后。得到 L16、R16。将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算。由此即得到密文输出。
整个算法 的主流程图例如以下:
分组模式
- ECB模式
ECB。中文名“电子password本模式”。是最古老、最简单的模式,将加密的数据分成若干组,每组的大小跟加密密钥长度同样。
然后每组都用同样的密钥加密,比方 DES 算法。假设最后一个分组长度不够 64 位,要补齐 64 位。
如图所看到的:
- CBC模式
CBC。中文名“加密块链模式”,与 ECB 模式最大的不同是增加了初始向量。他的特点是,每次加密的密文长度为 64位 ( 8 个字节),当同样的明文使用同样的密钥和初始向量的时候 CBC 模式总是产生同样的密文。
- CFB模式
CFB,中文名“加密反馈模式”。加密反馈模式克服了须要等待 8 个字节才干加密的缺点。它採用了分组password作为流password的密钥流生成器。
他的特点是。每次加密的 Pi 和 Ci 不大于 64 位;加密算法和解密算法同样。不能适用于公钥算法。使用同样的密钥和初始向量的时候。同样明文使用 CFB 模式加密输出同样的密文。能够使用不同的初始化变量使同样的明文产生不同的密文。防止字典攻击。加密强度依赖于密钥长度;加密块长度过小时,会添加循环的数量,导致开销添加;加密块长度应时 8 位的整数倍(即字节为单位);一旦某位数据出错,会影响眼下和其后 8 个块的数据。
- OFB模式
OFB,中文名“输出反馈模式”,与 CFB 模式不同之处在于, 加密位移寄存器与密文无关了,仅与加密 key 和加密算法有关,做法是不再把密文输入到加密移位寄存器,而是把输出的分组密文(Oi)输入到一位寄存器。由于密文没有參与链操作。所以使得 OFB 模式更easy受到攻击;不会进行错误传播,某位密文错误发生,仅仅会影响该位相应的明文,而不会影响别的位;不是自同步的。假设加密和解密两个操作失去同步,那么系统须要又一次初始化;每次又一次同步时,应使用不同的初始向量。能够避免产生同样的比特流。避免“已知明文”攻击。
- CTR模式
CTR。中文名“计数模式”,是对一系列输入数据块(称为计数)进行加密,产生一系列的输出块,输出块与明文异或得到密文。对于最后的数据块。可能是长 u 位的局部数据块,这 u 位就将用于异或操作,而剩下的 b-u 位将被丢弃(b表示块的长度)。
代码实现
<span style="font-family:Comic Sans MS;"><span style="font-size:12px;">package com.sica.des; import com.google.common.base.Strings; import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder; import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import javax.crypto.SecretKeyFactory; import javax.crypto.spec.DESKeySpec; import java.security.InvalidKeyException; import java.security.Key; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.security.spec.InvalidKeySpecException; /** * Created by xiang.li on 2015/2/28. * DES 加解密工具类 * * <pre> * 支持 DES、DESede(TripleDES,就是3DES)、AES、Blowfish、RC2、RC4(ARCFOUR) * DES key size must be equal to 56 * DESede(TripleDES) key size must be equal to 112 or 168 * AES key size must be equal to 128, 192 or 256,but 192 and 256 bits may not be available * Blowfish key size must be multiple of 8, and can only range from 32 to 448 (inclusive) * RC2 key size must be between 40 and 1024 bits * RC4(ARCFOUR) key size must be between 40 and 1024 bits * 详细内容 须要关注 JDK Document http://.../docs/technotes/guides/security/SunProviders.html * </pre> */ public class DES { /** * 定义加密方式 */ private final static String KEY_DES = "DES"; private final static String KEY_AES = "AES"; // 測试 /** * 全局数组 */ private final static String[] hexDigits = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f" }; /** * 初始化密钥 * @return */ public static String init() { return init(null); } /** * 初始化密钥 * @param seed 初始化參数 * @return */ public static String init(String seed) { SecureRandom secure = null; String str = ""; try { if (null != secure) { // 带參数的初始化 secure = new SecureRandom(decryptBase64(seed)); } else { // 不带參数的初始化 secure = new SecureRandom(); } KeyGenerator generator = KeyGenerator.getInstance(KEY_DES); generator.init(secure); SecretKey key = generator.generateKey(); str = encryptBase64(key.getEncoded()); } catch (Exception e) { e.printStackTrace(); } return str; } /** * 转换密钥 * @param key 密钥的字节数组 * @return */ private static Key byteToKey(byte[] key) { SecretKey secretKey = null; try { DESKeySpec dks = new DESKeySpec(key); SecretKeyFactory factory = SecretKeyFactory.getInstance(KEY_DES); secretKey = factory.generateSecret(dks); // 当使用其它对称加密算法时,如AES、Blowfish等算法时,用下述代码替换上述三行代码 // secretKey = new SecretKeySpec(key, KEY_DES); } catch (InvalidKeyException e) { e.printStackTrace(); } catch (NoSuchAlgorithmException e) { e.printStackTrace(); } catch (InvalidKeySpecException e) { e.printStackTrace(); } return secretKey; } /** * DES 解密 * @param data 须要解密的字符串 * @param key 密钥 * @return */ public static String decryptDES(String data, String key) { // 验证传入的字符串 if (Strings.isNullOrEmpty(data)) { return ""; } // 调用解密方法完毕解密 byte[] bytes = decryptDES(hexString2Bytes(data), key); // 将得到的字节数组变成字符串返回 return new String(bytes); } /** * DES 解密 * @param data 须要解密的字节数组 * @param key 密钥 * @return */ public static byte[] decryptDES(byte[] data, String key) { byte[] bytes = null; try { Key k = byteToKey(decryptBase64(key)); Cipher cipher = Cipher.getInstance(KEY_DES); cipher.init(Cipher.DECRYPT_MODE, k); bytes = cipher.doFinal(data); } catch (Exception e) { e.printStackTrace(); } return bytes; } /** * DES 加密 * @param data 须要加密的字符串 * @param key 密钥 * @return */ public static String encryptDES(String data, String key) { // 验证传入的字符串 if (Strings.isNullOrEmpty(data)) { return ""; } // 调用加密方法完毕加密 byte[] bytes = encryptDES(data.getBytes(), key); // 将得到的字节数组变成字符串返回 return byteArrayToHexString(bytes); } /** * DES 加密 * @param data 须要加密的字节数组 * @param key 密钥 * @return */ public static byte[] encryptDES(byte[] data, String key) { byte[] bytes = null; try { Key k = byteToKey(decryptBase64(key)); Cipher cipher = Cipher.getInstance(KEY_DES); cipher.init(Cipher.ENCRYPT_MODE, k); bytes = cipher.doFinal(data); } catch (Exception e) { e.printStackTrace(); } return bytes; } /** * BASE64 解密 * @param key 须要解密的字符串 * @return 字节数组 * @throws Exception */ public static byte[] decryptBase64(String key) throws Exception { return (new BASE64Decoder()).decodeBuffer(key); } /** * BASE64 加密 * @param key 须要加密的字节数组 * @return 字符串 * @throws Exception */ public static String encryptBase64(byte[] key) throws Exception { return (new BASE64Encoder()).encodeBuffer(key); } /** * 将一个字节转化成十六进制形式的字符串 * @param b 字节数组 * @return 字符串 */ private static String byteToHexString(byte b) { int ret = b; //System.out.println("ret = " + ret); if (ret < 0) { ret += 256; } int m = ret / 16; int n = ret % 16; return hexDigits[m] + hexDigits[n]; } /** * 转换字节数组为十六进制字符串 * @param bytes 字节数组 * @return 十六进制字符串 */ private static String byteArrayToHexString(byte[] bytes) { StringBuffer sb = new StringBuffer(); for (int i = 0; i < bytes.length; i++) { sb.append(byteToHexString(bytes[i])); } return sb.toString(); } /** * 转换十六进制字符串为字节数组 * @param hexstr 十六进制字符串 * @return */ public static byte[] hexString2Bytes(String hexstr) { byte[] b = new byte[hexstr.length() / 2]; int j = 0; for (int i = 0; i < b.length; i++) { char c0 = hexstr.charAt(j++); char c1 = hexstr.charAt(j++); b[i] = (byte) ((parse(c0) << 4) | parse(c1)); } return b; } /** * 转换字符类型数据为整型数据 * @param c 字符 * @return */ private static int parse(char c) { if (c >= ‘a‘) return (c - ‘a‘ + 10) & 0x0f; if (c >= ‘A‘) return (c - ‘A‘ + 10) & 0x0f; return (c - ‘0‘) & 0x0f; } /** * 測试方法 * @param args */ public static void main(String[] args) { String key = DES.init(); System.out.println("DES密钥:\n" + key); String word = "123"; String encWord = encryptDES(word, key); System.out.println(word + "\n加密后:\n" + encWord); System.out.println(word + "\n解密后:\n" + decryptDES(encWord, key)); } }</span><span style="font-size: 14px;"> </span></span>
结束语
到这里。这篇文章也就差点儿相同要结束了,希望以上的内容对各位看官有稍许的帮助,哪怕一点也好。事实上,在日常的开发中,假设不是进度控制的特别严格。对于这些原理性的东西,我们还是需要知道的,对于那些细节的东西,能够不用死记硬背。有网的话,随用随查就能够了。但这个前提是,原理性的东西必需要懂,知道了原理。就会有解决思路,有了思路,解决这个问题是迟早的事,细节嘛,不用那么纠结,做的时候考虑到即可了,毕竟时间是有限的。
以上是关于Java 加解密技术系列之 DES的主要内容,如果未能解决你的问题,请参考以下文章