《机器学习实战》学习笔记:Logistic 回归

Posted 我是管小亮

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《机器学习实战》学习笔记:Logistic 回归相关的知识,希望对你有一定的参考价值。

欢迎关注WX公众号:【程序员管小亮】

【机器学习】《机器学习实战》读书笔记及代码 总目录

GitHub代码地址:

——————————————————————————————————————————————————————

目录

本章内容

  • Sigmoid函数和Logistic回归分类器
  • 最优化理论初步
  • 梯度下降最优化算法
  • 数据中的缺失项处理

这会是激动人心的一章,因为会首次接触到 最优化算法。仔细想想就会发现,其实日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大?可见,最优化的作用十分强大。接下来会介绍几个最优化算法,并利用它们训练出一个非线性函数用于分类。

1、Logistic 回归

假设现在有一些数据点,用一条直线对这些点进行拟合(该线称为 最佳拟合直线),这个拟合过程就称作 回归


利用 Logistic回归 进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到 最佳拟合参数集,其背后的数学分析将在下一部分介绍。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。

Logistic回归的一般过程
(1) 收集数据:采用任意方法收集数据。
(2) 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
(3) 分析数据:采用任意方法对数据进行分析。
(4) 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
(5) 测试算法:一旦训练步骤完成,分类将会很快。
(6) 使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

Logistic回归的因变量可以是二分类的,也可以是多分类的,但是实际中最为常用的就是二分类的Logistic回归。它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。

Logistic回归
优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。

2、基于Logistic 回归和Sigmoid 函数的分类

为什么利用的是Sigmoid函数呢?

首先我们想要的函数应该是,能接受所有的输入然后预测出类别。例如,在两个类的情况下,上述函数输出0或1。或许你之前接触过具有这种性质的函数,该函数称为 海维塞德阶跃函数(Heaviside step function),或者直接称为 单位阶跃函数。然而,海维塞德阶跃函数的问题在于:该函数在跳跃点上从0瞬间跳跃到1,这个瞬间跳跃过程有时很难处理。

幸好,另一个函数也有类似的性质(可以输出0或者1),且数学上更易处理,这就是Sigmoid函数。Sigmoid函数具体的计算公式如下:


如图中上图给出了Sigmoid函数在不同坐标尺度下的两条曲线图。当x为0时,Sigmoid函数值为0.5。随着x的增大,对应的Sigmoid值将逼近于1;而随着x的减小,Sigmoid值将逼近于0。如果横坐标刻度足够大(图中下图),Sigmoid函数看起来很像一个阶跃函数。

因此,为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。所以,Logistic回归也可以被看成是一种概率估计。确定了分类器的函数形式之后,那么现在的问题变成了:最佳回归系数是多少? 如何确定它们的大小?

3、梯度上升算法

Sigmoid函数的输入记为z,由下面公式得出:

如果采用向量的写法,上述公式可以写成 z = w T x z = w^Tx z=wTx,它表示将这两个数值向量对应元素相乘然后全部加起来即得到z值。其中的向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数(系数),从而使得分类器尽可能地精确。为了寻找该最佳参数,需要用到最优化理论的一些知识。本文使用梯度上升算法进行求解。

那么什么是梯度上升算法?梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为∇,则函数f(x,y)的梯度由下式表示:

这是机器学习中最易造成混淆的一个地方,但在数学上并不难,需要做的只是牢记这些符号的意义。这个梯度意味着要沿x的方向移动,沿y的方向移动。其中,函数f (x,y)必须要在待计算的点上有定义并且可微。一个具体的函数例子见下图:

上图中的梯度上升算法沿梯度方向移动了一步。可以看到,梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为步长,记做α。用向量来表示的话,梯度上升算法的迭代公式如下:

该公式将一直被迭代执行,直至达到某个停止条件为止,比如迭代次数达到某个指定值或算法达到某个可以允许的误差范围。

梯度下降算法
你最经常听到的应该是梯度下降算法,它与这里的梯度上升算法是一样的,只是公式中的加法需要变成减法。因此,对应的公式可以写成

梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。

4、基于最优化方法的最佳回归系数确定

1)查看数据的分布情况

这是一个简单的没什么实际含义的数据集,先看一些具体的数据是怎么样的:

这个数据有两维特征,因此可以在一个二维平面上展示。首先将第一列数据(X1)看作x轴上的值,然后第二列数据(X2)看作y轴上的值,最后把最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。

import matplotlib.pyplot as plt
import numpy as np

"""
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
"""
# 函数说明:加载数据
def loadDataSet():
    dataMat = []                                                        #创建数据列表
    labelMat = []                                                       #创建标签列表
    fr = open('testSet.txt')                                            #打开文件   
    for line in fr.readlines():                                         #逐行读取
        lineArr = line.strip().split()                                  #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])     #添加数据
        labelMat.append(int(lineArr[2]))                                #添加标签
    fr.close()                                                          #关闭文件
    return dataMat, labelMat                                            #返回

# 函数说明:绘制数据集
def plotDataSet():
    dataMat, labelMat = loadDataSet()                                   #加载数据集
    dataArr = np.array(dataMat)                                         #转换成numpy的array数组
    n = np.shape(dataMat)[0]                                            #数据个数
    xcord1 = []; ycord1 = []                                            #正样本
    xcord2 = []; ycord2 = []                                            #负样本
    for i in range(n):                                                  #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])    #1为正样本
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                           #添加subplot
    ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
    ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5)            #绘制负样本
    plt.title('DataSet')                                                #绘制title
    plt.xlabel('x'); plt.ylabel('y')                                    #绘制label
    plt.show()                                                          #显示


if __name__ == '__main__':
    plotDataSet()


从上图可以看出我们采用的数据的分布情况。

2)训练算法:使用梯度上升找到最佳参数

数据中有100个样本点,每个点包含两个数值型特征:X1和X2。在此数据集上,通过使用梯度上升法找到最佳回归系数,也就是拟合出Logistic回归模型的最佳参数。

梯度上升法的伪代码如下:

每个回归系数初始化为1
重复R次:
	计算整个数据集的梯度
	使用alpha × gradient更新回归系数的向量
	返回回归系数

具体实现代码如下:

import numpy as np

'''
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
'''
# 函数说明:加载数据
def loadDataSet():
    dataMat = []                                                    #创建数据列表
    labelMat = []                                                   #创建标签列表
    fr = open('testSet.txt')                                        #打开文件   
    for line in fr.readlines():                                     #逐行读取
        lineArr = line.strip().split()                              #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据
        labelMat.append(int(lineArr[2]))                            #添加标签
    fr.close()                                                      #关闭文件
    return dataMat, labelMat                                        #返回

'''
Parameters:
    inX - 数据
Returns:
    sigmoid函数
'''
# 函数说明:sigmoid函数
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

'''
Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
'''
# 函数说明:梯度上升算法
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                                  #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                      #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                                     #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                                   #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                                 #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                           #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                           #将矩阵转换为数组,返回权重数组


if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()           
    print(gradAscent(dataMat, labelMat))


假设Sigmoid函数的输入记为 z z z,那么 z = w 0 x 0 + w 1 x 1 + w 2 x 2 z=w_0x_0 + w_1x_1 + w_2x_2 z=w0x0+w1x1+w2x2,即可将数据分割开。其中, x 0 x_0 x0 为全是1的向量, x 1 x_1 x1 为数据集的第一列数据, x 2 x_2 x2 为数据集的第二列数据。另 z = 0 z=0 z=0,则 0 = w 0 + w 1 x 1 + w 2 x 2 0=w_0 + w_1x_1 + w_2x_2 0=w0+w1x1+w2x2。横坐标为 x 1 x_1 x1,纵坐标为 x 2 x_2 x2。这个方程未知的参数为 w 0 , w 1 , w 2 w_0,w_1,w_2 w0w1w2,也就是我们需要求的回归系数(最优参数)。已经求解出的就是回归系数 [ w 0 , w 1 , w 2 ] [w_0,w_1,w_2] [w0,w1,w2],通过系数就可以确定不同类别数据之间的分割线,画出决策边界。

3)分析数据:画出决策边界

已经解出了一组回归系数。现在开始绘制这个分隔线:

import matplotlib.pyplot as plt
import numpy as np

'''
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
'''
# 函数说明:加载数据
def loadDataSet():
    dataMat = []                                                    #创建数据列表
    labelMat = []                                                   #创建标签列表
    fr = open('testSet.txt')                                        #打开文件   
    for line in fr.readlines():                                     #逐行读取
        lineArr = line.strip().split()                              #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据
        labelMat.append(int(lineArr[2]))                            #添加标签
    fr.close()                                                      #关闭文件
    return dataMat, labelMat                                        #返回

'''
Parameters:
    inX - 数据
Returns:
    sigmoid函数
'''
# 函数说明:sigmoid函数
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

'''
Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)
'''
# 函数说明:梯度上升算法
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                                  #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                      #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                                     #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                                   #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                                 #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                           #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                           #将矩阵转换为数组,返回权重数组

'''
Parameters:
    weights - 权重参数数组
Returns:
    无
'''
# 函数说明:绘制数据集
def plotBestFit(weights):
    dataMat, labelMat = loadDataSet()                                   #加载数据集
    dataArr = np以上是关于《机器学习实战》学习笔记:Logistic 回归的主要内容,如果未能解决你的问题,请参考以下文章

机器学习实战读书笔记Logistic回归

《机器学习实战》Logistic回归算法

[机器学习实战-Logistic回归]使用Logistic回归预测各种实例

机器学习笔记—再谈广义线性模型

机器学习Logistic回归---学习笔记

机器学习实战 logistic回归 python代码