tensorflow-chp04
Posted rongyongfeikai2
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow-chp04相关的知识,希望对你有一定的参考价值。
#coding:utf-8
import tensorflow as tf
if __name__ == '__main__':
(x,y),(x_test,y_test) = tf.keras.datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32)/255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
y_onehot = tf.one_hot(y, depth=10)
x = tf.reshape(x, [-1,28*28])
lr = 0.001
w1 = tf.Variable(tf.random.truncated_normal([784,256],stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256,128],stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
for epoch in range(0, 500):
with tf.GradientTape() as tape:
h1 = x@w1 + b1
h1 = tf.nn.relu(h1)
h2 = h1@w2 + b2
h2 = tf.nn.relu(h2)
out = h2@w3 + b3
loss = tf.square(y_onehot-out)
loss = tf.reduce_mean(loss)
print("epch:" + str(epoch) + "loss: " + str(loss.numpy()))
grads = tape.gradient(loss, [w1,b1,w2,b2,w3,b3])
w1.assign_sub(lr*grads[0])
b1.assign_sub(lr*grads[1])
w2.assign_sub(lr*grads[2])
b2.assign_sub(lr*grads[3])
w3.assign_sub(lr*grads[4])
b3.assign_sub(lr*grads[5])
以上是关于tensorflow-chp04的主要内容,如果未能解决你的问题,请参考以下文章
tensorflow -----AttributeError: module ‘tensorflo
Windows下Pycharm安装Tensorflow:ERROR: Could not find a version that satisfies the requirement tensorflo