sparksql比hivesql优化的点(窗口函数)
Posted 小萝卜算子
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sparksql比hivesql优化的点(窗口函数)相关的知识,希望对你有一定的参考价值。
有时候,一个 select 语句中包含多个窗口函数,它们的窗口定义(OVER 子句)可能相同、也可能不同。
对于相同的窗口,完全没必要再做一次分区和排序,我们可以将它们合并成一个 Window 算子。
select
id,
sq,
cell_type,
rank,
row_number() over(partition by id order by rank ) naturl_rank,
rank() over(partition by id order by rank) as r,
dense_rank() over(partition by cell_type order by id) as dr
from window_test_table
group by id,sq,cell_type,rank;
row_number() rank() 的窗口一样,可以放在一次分区和排序中完成,这一块hive sql与spark sql的表现是一致的。
但对于另外一种情况:
select
id,
rank,
row_number() over(partition by id order by rank ) naturl_rank,
sum(rank) over(partition by id) as snum
from window_test_table
虽然这 2 个窗口并非完全一致,但是 sum(rank) 不关心分区内的顺序,完全可以复用 row_number() 的窗口。
从下面执行计划可以看出,spark sql sum(rank) 和row_number() 复用了同一个窗口,而hive sql没有。
spark sql的执行计划:
spark-sql> explain select id,rank,row_number() over(partition by id order by rank ) naturl_rank,sum(rank) over(partition by id) as snum from window_test_table;
== Physical Plan ==
*(3) Project [id#13, rank#16, naturl_rank#8, snum#9L]
+- Window [row_number() windowspecdefinition(id#13, rank#16 ASC NULLS FIRST, specifiedwindowframe(RowFrame, unboundedpreceding$(), currentrow$())) AS naturl_rank#8], [id#13], [rank#16 ASC NULLS FIRST]
+- *(2) Sort [id#13 ASC NULLS FIRST, rank#16 ASC NULLS FIRST], false, 0
+- Window [sum(cast(rank#16 as bigint)) windowspecdefinition(id#13, specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) AS snum#9L], [id#13]
+- *(1) Sort [id#13 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(id#13, 200)
+- Scan hive tmp.window_test_table [id#13, rank#16], HiveTableRelation `tmp`.`window_test_table`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, [id#13, sq#14, cell_type#15, rank#16]
Time taken: 0.278 seconds, Fetched 1 row(s)
hive sql执行计划:
hive> explain select id,rank,row_number() over(partition by id order by rank ) naturl_rank,sum(rank) over(partition by id) as snum from window_test_table;
OK
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 depends on stages: Stage-2
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: window_test_table
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: id (type: int), rank (type: int)
sort order: ++
Map-reduce partition columns: id (type: int)
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
Reduce Operator Tree:
Select Operator
expressions: KEY.reducesinkkey0 (type: int), KEY.reducesinkkey1 (type: int)
outputColumnNames: _col0, _col3
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
PTF Operator
Function definitions:
Input definition
input alias: ptf_0
output shape: _col0: int, _col3: int
type: WINDOWING
Windowing table definition
input alias: ptf_1
name: windowingtablefunction
order by: _col3 ASC NULLS FIRST
partition by: _col0
raw input shape:
window functions:
window function definition
alias: row_number_window_0
name: row_number
window function: GenericUDAFRowNumberEvaluator
window frame: PRECEDING(MAX)~FOLLOWING(MAX)
isPivotResult: true
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col3 (type: int), row_number_window_0 (type: int)
outputColumnNames: _col0, _col3, row_number_window_0
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe
Stage: Stage-2
Map Reduce
Map Operator Tree:
TableScan
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
value expressions: row_number_window_0 (type: int), _col3 (type: int)
Reduce Operator Tree:
Select Operator
expressions: VALUE._col0 (type: int), KEY.reducesinkkey0 (type: int), VALUE._col3 (type: int)
outputColumnNames: _col0, _col1, _col4
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
PTF Operator
Function definitions:
Input definition
input alias: ptf_0
output shape: _col0: int, _col1: int, _col4: int
type: WINDOWING
Windowing table definition
input alias: ptf_1
name: windowingtablefunction
order by: _col1 ASC NULLS FIRST
partition by: _col1
raw input shape:
window functions:
window function definition
alias: sum_window_1
arguments: _col4
name: sum
window function: GenericUDAFSumLong
window frame: PRECEDING(MAX)~FOLLOWING(MAX)
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col1 (type: int), _col4 (type: int), _col0 (type: int), sum_window_1 (type: bigint)
outputColumnNames: _col0, _col1, _col2, _col3
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 13 Data size: 104 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
Time taken: 0.244 seconds, Fetched: 106 row(s)
以上是关于sparksql比hivesql优化的点(窗口函数)的主要内容,如果未能解决你的问题,请参考以下文章
oracleSQL 转 SPARKSQL(hiveSql) 及常用优化
HiveSql&SparkSql —— 使用left semi join做inexists类型子查询优化