AtCoder Regular Contest 154 题解
Posted nike0good
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder Regular Contest 154 题解相关的知识,希望对你有一定的参考价值。
A - Swap Digit
给 2 2 2个长度均为 n n n的十进制数,你可以任意次交换 2 2 2个相同位置的数字,要求使它们乘积最小
让其中一个数最小,另一个数最大。
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (998244353)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) \\
For(j,m-1) cout<<a[i][j]<<' ';\\
cout<<a[i][m]<<endl; \\
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b)return (a*b)%F;
ll add(ll a,ll b)return (a+b)%F;
ll sub(ll a,ll b)return ((a-b)%F+F)%F;
void upd(ll &a,ll b)a=(a%F+b%F)%F;
inline int read()
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) if (ch=='-') f=-1; ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0'; ch=getchar();
return x*f;
string a,b;
int main()
// freopen("A.in","r",stdin);
// freopen(".out","w",stdout);
int n=read();
cin>>a>>b;
ll p=0,q=0;
Rep(i,n)
if(a[i]<b[i]) p=(p*10+a[i]-'0')%F,q=(q*10+b[i]-'0')%F;
else
p=(p*10+b[i]-'0')%F,q=(q*10+a[i]-'0')%F;
cout<<mul(p,q);
return 0;
B - New Place
给 2 2 2个长度为 n n n的串,每次可以把第一个串的第一个字符塞进这个字符串任意位置,问把这两个串变相同的最小次数。无解 − 1 -1 −1。
有解当且仅当各个字符在2个字符串中出现次数相同
贪心匹配第一个字符串中的后缀
#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) \\
For(j,m-1) cout<<a[i][j]<<' ';\\
cout<<a[i][m]<<endl; \\
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b)return (a*b)%F;
ll add(ll a,ll b)return (a+b)%F;
ll sub(ll a,ll b)return ((a-b)%F+F)%F;
void upd(ll &a,ll b)a=(a%F+b%F)%F;
inline int read()
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) if (ch=='-') f=-1; ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0'; ch=getchar();
return x*f;
int main()
// freopen("B.in","r",stdin);
// freopen(".out","w",stdout);
int n=read();
string s,t;
cin>>s>>t;
int c[256]=;
Rep(i,n) c[s[i]]++,c[t[i]]--;
Fork(i,'a','z') if(c[i])
puts("-1");return 0;
int p=n-1,ans=0;
RepD(i,n-1)
while(p>=0 && s[i]!=t[p]) --p;
if(p<0) break;
--p,++ans;
cout<<n-ans;
return 0;
C - Roller
You are given sequences of positive integers of length
A
,
B
A,B
A,B
You can repeat the following operation any number of times (possibly zero).
Choose an integer
i
i
i such that
1
≤
i
≤
N
1≤i≤N
1≤i≤N and A_i :=A_i+1
.
Here, regard
A
N
+
1
A_N+1
AN+1 as
A
1
A_1
A1
Determine whether it is possible to make 刷题AtCoder Regular Contest 001