pegasus help
Posted cv.exp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pegasus help相关的知识,希望对你有一定的参考价值。
~/VeriSilicon$ pegasus help
2023-01-27 09:02:57.629258: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/user/VeriSilicon/acuity-toolkit-binary-6.6.1/bin/acuitylib:/usr/local/cuda-11.3/lib64:/usr/local/cuda-11.3/lib64:
2023-01-27 09:02:57.629764: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
D Get binary package acuity_path [/home/user/VeriSilicon/acuity-toolkit-binary-6.6.1/bin]
usage: pegasus(.py) <command> [<args>]
There are common pegasus commands used in various situations:
Import models.(import)
caffe Import caffe model.
tensorflow Import tensorflow model.
tflite Import tflite model.
darknet Import darknet model.
onnx Import onnx model.
pytorch Import pytorch model.
keras Import keras model.
Export models.(export)
ovxlib EXport ovxlib code.
ide Export ide code.
tflite Export tflite model.
Generate metas.(generate)
inputmeta Generate input meta data.
postprocess-file Generate postprocess file.
fakedata Generate fake data of cofficients.
prune models.(prune)
--model Network model file.
--model-data Network coefficient file.
--output-data Network coefficient file after pruning.
If not specified, data_input file will be overwritten
--config-file Prune config file containing layer_name and prune percentage.
If file does not exist, a stub will be generated
--prune-percent Purne percentage of each layer, from 0.0 to 100.0
--prune-level Specify the pruning granularity levels [element | vector | kernel | filter]
- element: pruning granularity down to individual weight element (1)
- vector: a vector or row of a 2D convolution kernel (Kx)
- kernel: 2D convolution kernel (Kx * Ky)
- filter: 3D convolution filter (Kx * Ky * Kz)
Inference model and get result.(inference)
--model Network model input file.
--model-data Network coefficient input file.
--model-quantize Quantized tensor description file.
--batch-size Batch size.
--iterations Running iterations.
--device Specify the compute device.
--with-input-meta Merge input meta into network.
--output-dir Output directory of generated files.
--dtype Data type used.
--postprocess Postprocess task.
--postprocess-file Postprocess task configure file.
Quantize model.(quantize)
--model Network model input file.
--model-data Network coefficient input file.
--model-quantize Quantized tensor description file.
--batch-size Batch size.
--iterations Running iterations.
--device Specify the compute device.
--with-input-meta Merge input meta into network.
--output-dir Output directory of generated files.
--quantizer Quantizer type.
--qtype Quantization data type. e.g. "int8", "uint8", "int16", "bfloat16", "qbfloat16", "int4", "uint4".
--hybrid Hybrid quantize.
--rebuild Rebuild quantize tab.
--rebuild-all Rebuild quantize table for all.
--algorithm Quantization algorithm.
--moving-average-weight Moving average coef.
--divergence-nbins KL divergence histogram nbins.
--divergence-first-quantize-bits KL divergence first quantize bits.
--compute-entropy compute tensor entropy.
--MLE minimize per layer error
Train model.(train)
--model Network model input file.
--model-data Network coefficient input file.
--model-quantize Quantized tensor description file.
--batch-size Batch size.
--iterations Running iterations.
--device Specify the compute device.
--with-input-meta Merge input meta into network.
--output-dir Output directory of generated files.
--dtype Data type used.
--lr Learning rate.
--optimizer Training gradient optimizer.
--decay-steps Momentum decay steps.
--iterations-to-save-checkpoint Iterations to save checkpoints .
--checkpoint-path Checkpoint path.
--max-checkpoint-num Max number of checkpoints.
Dump model activations.(dump)
--model Network model input file.
--model-data Network coefficient input file.
--model-quantize Quantized tensor description file.
--batch-size Batch size.
--iterations Running iterations.
--device Specify the compute device.
--with-input-meta Merge input meta into network.
--output-dir Output directory of generated files.
--dtype Data type used.
--format When saving snapshot, save data in nchw/nhwc format.
--save-quantize Save data in quantized format
--save-file-type When saving snapshot, save file type.
Get amount of calculation, parameter and activation.(measure)
--model Network model input file.
--model-quantize Quantized tensor description file.
--dtype Data type used.
--output-dir Output directory of generated files.
I ----------------Error(0),Warning(0)----------------
以上是关于pegasus help的主要内容,如果未能解决你的问题,请参考以下文章