ArrayList源码解析

Posted 夜宿山寺

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ArrayList源码解析相关的知识,希望对你有一定的参考价值。

这个是基于jdk1.8的一个解析,这是一个可以放可重复元素的一个集合。其实为什么说ArrayList在添加或者删除上的性能比LinkedList慢,因为在添加或者删除的时候会让数组进行一个拷贝操作,特别是删除的时候,需要对数组进行一个复制或者移动,但还好都是用java的本地方法进行的,在效率上比较高,还要提到的就是另外一个集合Vector,这是一个线程安全的ArrayList,在实现上并没有多大差别,只是在方法上面添加了一个 synchronized


package java.util;

import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
//ArrayList实现机制,他实现了List,Cloneable,可通过clone方法拷贝,Serializable可序列化,RandomAccess,可随机访问
public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable

    private static final long serialVersionUID = 8683452581122892189L;

	//设置默认的容量
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    private static final Object[] EMPTY_ELEMENTDATA = ;

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == EMPTY_ELEMENTDATA will be expanded to
     * DEFAULT_CAPACITY when the first element is added.
     */
	 //底层数据其实是采用Object来存储的,并不是通过泛型
    transient Object[] elementData; // non-private to simplify nested class access

    //list数据量记录
    private int size;

    //指定容量初始化,如果知道数据量的大小,基于优化最好能够指定容量大小,减少数据的拷贝
    public ArrayList(int initialCapacity) 
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
    

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public ArrayList() 
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    


	//初始化的时候直接拷贝集合数据
    public ArrayList(Collection<? extends E> c) 
        elementData = c.toArray();
        size = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    
	// 将此 ArrayList 实例的容量调整为列表的当前大小,因为ArrayList在分配空间的时候会分配多余的空间,调用这个方法可以使那些多余的空间释放掉
    public void trimToSize() 
        modCount++;
        if (size < elementData.length) 
            elementData = Arrays.copyOf(elementData, size);
        
    

    /**
     * Increases the capacity of this <tt>ArrayList</tt> instance, if
     * necessary, to ensure that it can hold at least the number of elements
     * specified by the minimum capacity argument.
     *
     * @param   minCapacity   the desired minimum capacity
     */
	 //扩大arrayList容量
    public void ensureCapacity(int minCapacity) 
	//判断该ArrayList是否为空没有使用过
        int minExpand = (elementData != EMPTY_ELEMENTDATA)
            // any size if real element table
            ? 0
            // larger than default for empty table. It's already supposed to be
            // at default size.
            : DEFAULT_CAPACITY;

			//当扩展容量大于最小扩展容量的时候进行扩展
        if (minCapacity > minExpand) 
            ensureExplicitCapacity(minCapacity);
        
    

    private void ensureCapacityInternal(int minCapacity) 
        if (elementData == EMPTY_ELEMENTDATA) 
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        

        ensureExplicitCapacity(minCapacity);
    

    private void ensureExplicitCapacity(int minCapacity) 
        modCount++;

		//扩展的容量必须大于当前元素的长度
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    

    /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

 
	 //实现list容量的扩充
    private void grow(int minCapacity) 
        // overflow-conscious code
		//首先获取到原数组的长度
        int oldCapacity = elementData.length;
		//然后将原数组的长度+原数组长度除以2
        int newCapacity = oldCapacity + (oldCapacity >> 1);
		//判断新容量的长度是否小于最小容量
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
			//判断新容量是否超过了最大容量
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
		//扩从的时候实现一个新数组的拷贝
        elementData = Arrays.copyOf(elementData, newCapacity);
    

    private static int hugeCapacity(int minCapacity) 
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    

  
    public int size() 
        return size;
    

    public boolean isEmpty() 
        return size == 0;
    

   //是否包含这个元素
    public boolean contains(Object o) 
        return indexOf(o) >= 0;
    

    //底层实现是采用了equals方法,所以使用这个方法最好复写方法的equals方法
    public int indexOf(Object o) 
        if (o == null) 
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
         else 
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        
        return -1;
    
    //和上面的方法差不多,只不过这个是返回倒叙的一个下标
    public int lastIndexOf(Object o) 
        if (o == null) 
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
         else 
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        
        return -1;
    
  //复写Object的clone方法实现深克隆
    public Object clone() 
        try 
            ArrayList<?> v = (ArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
         catch (CloneNotSupportedException e) 
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        
    

	 //这里返回的是一个安全的数组,不跟原来数组无关的一个地址
    public Object[] toArray() 
        return Arrays.copyOf(elementData, size);
    

  
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) 
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    

    // Positional Access Operations

	//这是一个不安全的访问
    @SuppressWarnings("unchecked")
    E elementData(int index) 
        return (E) elementData[index];
    
	//这是一个安全的访问
    public E get(int index) 
        rangeCheck(index);

        return elementData(index);
    
//设置相应的index的值
    public E set(int index, E element) 
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    


	//添加元素
    public boolean add(E e) 
	//增加容量当容量不够的时候会自动复制数据到另外的一个集合
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    

    /**
     * Inserts the specified element at the specified position in this
     * list. Shifts the element currently at that position (if any) and
     * any subsequent elements to the right (adds one to their indices).
     *
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException @inheritDoc
     */
    public void add(int index, E element) 
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    

  
    public E remove(int index) 
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    


    public boolean remove(Object o) 
        if (o == null) 
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) 
                    fastRemove(index);
                    return true;
                
         else 
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) 
                    fastRemove(index);
                    return true;
                
        
        return false;
    


    private void fastRemove(int index) 
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    

  
    public void clear() 
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    


    public boolean addAll(Collection<? extends E> c) 
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    

   
    public boolean addAll(int index, Collection<? extends E> c) 
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    

 
    protected void removeRange(int fromIndex, int toIndex) 
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) 
            elementData[i] = null;
        
        size = newSize;
    

    /**
     * Checks if the given index is in range.  If not, throws an appropriate
     * runtime exception.  This method does *not* check if the index is
     * negative: It is always used immediately prior to an array access,
     * which throws an ArrayIndexOutOfBoundsException if index is negative.
     */
    private void rangeCheck(int index) 
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) 
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) 
        return "Index: "+index+", Size: "+size;
    

 
	 //移除该集合类包含传进来的集合里面的元素 
    public boolean removeAll(Collection<?> c) 
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    
  
  //只保留传进来的集合里面的元素
    public boolean retainAll(Collection<?> c) 
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    

	//主要是为了retainAll  removeAll提供具体的实现
    private boolean batchRemove(Collection<?> c, boolean complement) 
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try 
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)  //根据complement设置包含或者不包含
                    elementData[w++] = elementData[r];
         finally 
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) 
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            
            if (w != size) 
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            
        
        return modified;
    

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) 
            s.writeObject(elementData[i]);
        

        if (modCount != expectedModCount) 
            throw new ConcurrentModificationException();
        
    

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException 
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) 
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) 
                a[i] = s.readObject();
            
        
    

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * The specified index indicates the first element that would be
     * returned by an initial call to @link ListIterator#next next.
     * An initial call to @link ListIterator#previous previous would
     * return the element with the specified index minus one.
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException @inheritDoc
     */
    public ListIterator<E> listIterator(int index) 
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public ListIterator<E> listIterator() 
        return new ListItr(0);
    

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() 
        return new Itr();
    

    ///实现自己的迭代器
    private class Itr implements Iterator<E> 
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() 
            return cursor != size;
        

		//实现next方法,其实就是指定一个cursor然后让他不断的增加
        @SuppressWarnings("unchecked")
        public E next() 
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        

        public void remove() 
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try 
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
             catch (IndexOutOfBoundsException ex) 
                throw new ConcurrentModificationException();
            
        

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer) 
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) 
                return;
            
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) 
                throw new ConcurrentModificationException();
            
            while (i != size && modCount == expectedModCount) 
                consumer.accept((E) elementData[i++]);
            
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        

        final void checkForComodification() 
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        
    

    /**
     * An optimized version of AbstractList.ListItr
     */
    private class ListItr extends Itr implements ListIterator<E> 
        ListItr(int index) 
            super();
            cursor = index;
        

        public boolean hasPrevious() 
            return cursor != 0;
        

        public int nextIndex() 
            return cursor;
        

        public int previousIndex() 
            return cursor - 1;
        

        @SuppressWarnings("unchecked")
        public E previous() 
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        

        public void set(E e) 
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try 
                ArrayList.this.set(lastRet, e);
             catch (IndexOutOfBoundsException ex) 
                throw new ConcurrentModificationException();
            
        

        public void add(E e) 
            checkForComodification();

            try 
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
             catch (IndexOutOfBoundsException ex) 
                throw new ConcurrentModificationException();
            
        
    

    /**
     * Returns a view of the portion of this list between the specified
     * @code fromIndex, inclusive, and @code toIndex, exclusive.  (If
     * @code fromIndex and @code toIndex are equal, the returned list is
     * empty.)  The returned list is backed by this list, so non-structural
     * changes in the returned list are reflected in this list, and vice-versa.
     * The returned list supports all of the optional list operations.
     *
     * <p>This method eliminates the need for explicit range operations (of
     * the sort that commonly exist for arrays).  Any operation that expects
     * a list can be used as a range operation by passing a subList view
     * instead of a whole list.  For example, the following idiom
     * removes a range of elements from a list:
     * <pre>
     *      list.subList(from, to).clear();
     * </pre>
     * Similar idioms may be constructed for @link #indexOf(Object) and
     * @link #lastIndexOf(Object), and all of the algorithms in the
     * @link Collections class can be applied to a subList.
     *
     * <p>The semantics of the list returned by this method become undefined if
     * the backing list (i.e., this list) is <i>structurally modified</i> in
     * any way other than via the returned list.  (Structural modifications are
     * those that change the size of this list, or otherwise perturb it in such
     * a fashion that iterations in progress may yield incorrect results.)
     *
     * @throws IndexOutOfBoundsException @inheritDoc
     * @throws IllegalArgumentException @inheritDoc
     */
    public List<E> subList(int fromIndex, int toIndex) 
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    

    static void subListRangeCheck(int fromIndex, int toIndex, int size) 
        if (fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if (toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if (fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                               ") > toIndex(" + toIndex + ")");
    

    private class SubList extends AbstractList<E> implements RandomAccess 
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent,
                int offset, int fromIndex, int toIndex) 
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = ArrayList.this.modCount;
        

        public E set(int index, E e) 
            rangeCheck(index);
            checkForComodification();
            E oldValue = ArrayList.this.elementData(offset + index);
            ArrayList.this.elementData[offset + index] = e;
            return oldValue;
        

        public E get(int index) 
            rangeCheck(index);
            checkForComodification();
            return ArrayList.this.elementData(offset + index);
        

        public int size() 
            checkForComodification();
            return this.size;
        

        public void add(int index, E e) 
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            this.modCount = parent.modCount;
            this.size++;
        

        public E remove(int index) 
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            this.modCount = parent.modCount;
            this.size--;
            return result;
        

        protected void removeRange(int fromIndex, int toIndex) 
            checkForComodification();
            parent.removeRange(parentOffset + fromIndex,
                               parentOffset + toIndex);
            this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        

        public boolean addAll(Collection<? extends E> c) 
            return addAll(this.size, c);
        

        public boolean addAll(int index, Collection<? extends E> c) 
            rangeCheckForAdd(index);
            int cSize = c.size();
            if (cSize==0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        

        public Iterator<E> iterator() 
            return listIterator();
        

        public ListIterator<E> listIterator(final int index) 
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() 
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = ArrayList.this.modCount;

                public boolean hasNext() 
                    return cursor != SubList.this.size;
                

                @SuppressWarnings("unchecked")
                public E next() 
                    checkForComodification();
                    int i = cursor;
                    if (i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                

                public boolean hasPrevious() 
                    return cursor != 0;
                

                @SuppressWarnings("unchecked")
                public E previous() 
                    checkForComodification();
                    int i = cursor - 1;
                    if (i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer) 
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if (i >= size) 
                        return;
                    
                    final Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length) 
                        throw new ConcurrentModificationException();
                    
                    while (i != size && modCount == expectedModCount) 
                        consumer.accept((E) elementData[offset + (i++)]);
                    
                    // update once at end of iteration to reduce heap write traffic
                    lastRet = cursor = i;
                    checkForComodification();
                

                public int nextIndex() 
                    return cursor;
                

                public int previousIndex() 
                    return cursor - 1;
                

                public void remove() 
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try 
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                     catch (IndexOutOfBoundsException ex) 
                        throw new ConcurrentModificationException();
                    
                

                public void set(E e) 
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try 
                        ArrayList.this.set(offset + lastRet, e);
                     catch (IndexOutOfBoundsException ex) 
                        throw new ConcurrentModificationException();
                    
                

                public void add(E e) 
                    checkForComodification();

                    try 
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                     catch (IndexOutOfBoundsException ex) 
                        throw new ConcurrentModificationException();
                    
                

                final void checkForComodification() 
                    if (expectedModCount != ArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                
            ;
        

        public List<E> subList(int fromIndex, int toIndex) 
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        

        private void rangeCheck(int index) 
            if (index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        

        private void rangeCheckForAdd(int index) 
            if (index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        

        private String outOfBoundsMsg(int index) 
            return "Index: "+index+", Size: "+this.size;
        

        private void checkForComodification() 
            if (ArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        

        public Spliterator<E> spliterator() 
            checkForComodification();
            return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                               offset + this.size, this.modCount);
        
    

    @Override
    public void forEach(Consumer<? super E> action) 
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) 
            action.accept(elementData[i]);
        
        if (modCount != expectedModCount) 
            throw new ConcurrentModificationException();
        
    

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> @link Spliterator over the elements in this
     * list.
     *
     * <p>The @code Spliterator reports @link Spliterator#SIZED,
     * @link Spliterator#SUBSIZED, and @link Spliterator#ORDERED.
     * Overriding implementations should document the reporting of additional
     * characteristic values.
     *
     * @return a @code Spliterator over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() 
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    

    /** Index-based split-by-two, lazily initialized Spliterator */
    static final class ArrayListSpliterator<E> implements Spliterator<E> 

        /*
         * If ArrayLists were immutable, or structurally immutable (no
         * adds, removes, etc), we could implement their spliterators
         * with Arrays.spliterator. Instead we detect as much
         * interference during traversal as practical without
         * sacrificing much performance. We rely primarily on
         * modCounts. These are not guaranteed to detect concurrency
         * violations, and are sometimes overly conservative about
         * within-thread interference, but detect enough problems to
         * be worthwhile in practice. To carry this out, we (1) lazily
         * initialize fence and expectedModCount until the latest
         * point that we need to commit to the state we are checking
         * against; thus improving precision.  (This doesn't apply to
         * SubLists, that create spliterators with current non-lazy
         * values).  (2) We perform only a single
         * ConcurrentModificationException check at the end of forEach
         * (the most performance-sensitive method). When using forEach
         * (as opposed to iterators), we can normally only detect
         * interference after actions, not before. Further
         * CME-triggering checks apply to all other possible
         * violations of assumptions for example null or too-small
         * elementData array given its size(), that could only have
         * occurred due to interference.  This allows the inner loop
         * of forEach to run without any further checks, and
         * simplifies lambda-resolution. While this does entail a
         * number of checks, note that in the common case of
         * list.stream().forEach(a), no checks or other computation
         * occur anywhere other than inside forEach itself.  The other
         * less-often-used methods cannot take advantage of most of
         * these streamlinings.
         */

        private final ArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                             int expectedModCount) 
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        

        private int getFence()  // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            ArrayList<E> lst;
            if ((hi = fence) < 0) 
                if ((lst = list) == null)
                    hi = fence = 0;
                else 
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                
            
            return hi;
        

        public ArrayListSpliterator<E> trySplit() 
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null : // divide range in half unless too small
                new ArrayListSpliterator<E>(list, lo, index = mid,
                                            expectedModCount);
        

        public boolean tryAdvance(Consumer<? super E> action) 
            if (action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if (i < hi) 
                index = i + 1;
                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            
            return false;
        

        public void forEachRemaining(Consumer<? super E> action) 
            int i, hi, mc; // hoist accesses and checks from loop
            ArrayList<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null && (a = lst.elementData) != null) 
                if ((hi = fence) < 0) 
                    mc = lst.modCount;
                    hi = lst.size;
                
                else
                    mc = expectedModCount;
                if ((i = index) >= 0 && (index = hi) <= a.length) 
                    for (; i < hi; ++i) 
                        @SuppressWarnings("unchecked") E e = (E) a[i];
                        action.accept(e);
                    
                    if (lst.modCount == mc)
                        return;
                
            
            throw new ConcurrentModificationException();
        

        public long estimateSize() 
            return (long) (getFence() - index);
        

        public int characteristics() 
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        
    

    @Override
    public boolean removeIf(Predicate<? super E> filter) 
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) 
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) 
                removeSet.set(i);
                removeCount++;
            
        
        if (modCount != expectedModCount) 
            throw new ConcurrentModificationException();
        

        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) 
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) 
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            
            for (int k=newSize; k < size; k++) 
                elementData[k] = null;  // Let gc do its work
            
            this.size = newSize;
            if (modCount != expectedModCount) 
                throw new ConcurrentModificationException();
            
            modCount++;
        

        return anyToRemove;
    

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator) 
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) 
            elementData[i] = operator.apply((E) elementData[i]);
        
        if (modCount != expectedModCount) 
            throw new ConcurrentModificationException();
        
        modCount++;
    

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) 
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) 
            throw new ConcurrentModificationException();
        
        modCount++;
    



以上是关于ArrayList源码解析的主要内容,如果未能解决你的问题,请参考以下文章

ArrayList源码解析

List源码解析之ArrayList源码分析

ArrayList源码解析

arraylist源码解析

ArrayList源码解析

Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例