ThreadLocal精进篇:子线程类InheritableThreadLocal

Posted 沛沛老爹

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ThreadLocal精进篇:子线程类InheritableThreadLocal相关的知识,希望对你有一定的参考价值。

 背景

ThreadLocal可以保证在当前运行线程中的变量不被其他并发下的线程共享。

但是如果在代码中需要使用多线程呢?

ThreadLocal是否该如何保证相关子线程下的数据的传递安全性呢?

InheritableThreadLocal给我们提供了一丝可能。

InheritableThreadLocal

InheritableThreadLocal源码

先简单瞄下源码

package java.lang;
import java.lang.ref.*;

public class InheritableThreadLocal<T> extends ThreadLocal<T> 
 
    protected T childValue(T parentValue) 
        return parentValue;
    

    
    ThreadLocalMap getMap(Thread t) 
       return t.inheritableThreadLocals;
    

    
    void createMap(Thread t, T firstValue) 
        t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
    

可以很清楚的看到,InheritableThreadLocal是ThreadLcoal的子类。

 

测试代码

一切以代码为主,我们先上一段代码

package com.chuangyue;

import com.google.common.util.concurrent.ThreadFactoryBuilder;

import java.util.concurrent.*;

/**
 * 可继承线程本地测试
 *
 */
public class InheritableThreadLocalTest 


    public static void main(String[] args) 
        ThreadLocal<String> threadLocal =   new ThreadLocal<>();
        InheritableThreadLocal<String> inheritableThreadLocal = new InheritableThreadLocal<>();
        threadLocal.set(" I'm threadLocal ");
        inheritableThreadLocal.set("I'm inheritableThreadLocal");
        test01(threadLocal,inheritableThreadLocal);
    

    public static void  test01(ThreadLocal<String> threadLocal ,InheritableThreadLocal<String> inheritableThreadLocal)

        ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
                .setNameFormat("demo-pool-%d").build();
        ExecutorService singleThreadPool = new ThreadPoolExecutor(1, 1,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

        singleThreadPool.execute(()-> 
            System.out.println("========= begin =========");
            
            System.out.println(Thread.currentThread().getName()+" ThreadLocal: "+threadLocal.get());
            System.out.println(Thread.currentThread().getName()+" InheritableThreadLocal: "+inheritableThreadLocal.get());

            System.out.println("========= end =========");
        );
        
        singleThreadPool.shutdown();
    

这段测试代码里面,只是设置了ThreadLocal和InheritableThreadLocal两个对象,并且对其进行赋值。

然后再在线程中打印对应的对象结果。

输出结果如下

 按照正常的理解,应该是两个值都要输出。

但是在这里,我们可以清楚的看到,ThreadLocal输出值为null

这是为什么呢?

 

还是老规矩,我们看下源码

ThreadLocal源码


package java.lang;
import jdk.internal.misc.TerminatingThreadLocal;

import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;


public class ThreadLocal<T> 
   
    private final int threadLocalHashCode = nextHashCode();

    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * Returns the next hash code.
     */
    private static int nextHashCode() 
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    

    protected T initialValue() 
        return null;
    

 
    public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) 
        return new SuppliedThreadLocal<>(supplier);
    

    /**
     * Creates a thread local variable.
     * @see #withInitial(java.util.function.Supplier)
     */
    public ThreadLocal() 
    

 
    public T get() 
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) 
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) 
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            
        
        return setInitialValue();
    

   
    boolean isPresent() 
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        return map != null && map.getEntry(this) != null;
    

    
    private T setInitialValue() 
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) 
            map.set(this, value);
         else 
            createMap(t, value);
        
        if (this instanceof TerminatingThreadLocal) 
            TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);
        
        return value;
    

   
    public void set(T value) 
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) 
            map.set(this, value);
         else 
            createMap(t, value);
        
    

   
     public void remove() 
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null) 
             m.remove(this);
         
     

    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) 
        return t.threadLocals;
    

    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     */
    void createMap(Thread t, T firstValue) 
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    

    /**
     * Factory method to create map of inherited thread locals.
     * Designed to be called only from Thread constructor.
     *
     * @param  parentMap the map associated with parent thread
     * @return a map containing the parent's inheritable bindings
     */
    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) 
        return new ThreadLocalMap(parentMap);
    

    /**
     * Method childValue is visibly defined in subclass
     * InheritableThreadLocal, but is internally defined here for the
     * sake of providing createInheritedMap factory method without
     * needing to subclass the map class in InheritableThreadLocal.
     * This technique is preferable to the alternative of embedding
     * instanceof tests in methods.
     */
    T childValue(T parentValue) 
        throw new UnsupportedOperationException();
    

    /**
     * An extension of ThreadLocal that obtains its initial value from
     * the specified @code Supplier.
     */
    static final class SuppliedThreadLocal<T> extends ThreadLocal<T> 

        private final Supplier<? extends T> supplier;

        SuppliedThreadLocal(Supplier<? extends T> supplier) 
            this.supplier = Objects.requireNonNull(supplier);
        

        @Override
        protected T initialValue() 
            return supplier.get();
        
    

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap 

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> 
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) 
                super(k);
                value = v;
            
        

        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) 
            threshold = len * 2 / 3;
        

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) 
            return ((i + 1 < len) ? i + 1 : 0);
        

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) 
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) 
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) 
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (Entry e : parentTable) 
                if (e != null) 
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) 
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    
                
            
        

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal<?> key) 
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) 
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) 
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            
            return null;
        

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal<?> key, Object value) 

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) 
                ThreadLocal<?> k = e.get();

                if (k == key) 
                    e.value = value;
                    return;
                

                if (k == null) 
                    replaceStaleEntry(key, value, i);
                    return;
                
            

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal<?> key) 
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) 
                if (e.get() == key) 
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                
            
        

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) 
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) 
                ThreadLocal<?> k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) 
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) 
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) 
                ThreadLocal<?> k = e.get();
                if (k == null) 
                    e.value = null;
                    tab[i] = null;
                    size--;
                 else 
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) 
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    
                
            
            return i;
        

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: @code log2(n) cells are scanned,
         * unless a stale entry is found, in which case
         * @code log2(table.length)-1 additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) 
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do 
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) 
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                
             while ( (n >>>= 1) != 0);
            return removed;
        

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() 
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        

        /**
         * Double the capacity of the table.
         */
        private void resize() 
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (Entry e : oldTab) 
                if (e != null) 
                    ThreadLocal<?> k = e.get();
                    if (k == null) 
                        e.value = null; // Help the GC
                     else 
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    
                
            

            setThreshold(newLen);
            size = count;
            table = newTab;
        

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() 
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) 
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            
        
    

我们可以很清楚的看到,在ThreadLocal中也存在着以下三个方法:getMap,createMap和chuildValue。

    ThreadLocalMap getMap(Thread t) 
        return t.threadLocals;
    

   
    void createMap(Thread t, T firstValue) 
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    

    
    T childValue(T parentValue) 
        throw new UnsupportedOperationException();
    

 我们看下InherittableThreadLocal源码中,对重写的这三个方法的代码注解

    /**
     * 作为创建子线程时父线程值的函数,计算可继承线程局部变量的子线程初始值. 
     * 此方法在子线程启动之前从父线程内调用.
     * <p>
     * 此方法仅返回其输入参数,如果需要其他行为,则应重写此方法.
     *
     * @param parentValue 父线程值
     * @return 子线程初始化值
     */
    protected T childValue(T parentValue) 
        return parentValue;
    
/**
     * 获取与ThreadLocal相关的Map对象
     *
     * @param t 当前线程
     */
    ThreadLocalMap getMap(Thread t) 
       return t.inheritableThreadLocals;
    


    /**
     * 创建一个与ThreadLocal相关的map对象.
     *
     * @param t 当前线程
     * @param firstValue 表初始条目值.
     */
    void createMap(Thread t, T firstValue) 
        t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
    

我们直接跟踪下代码

这个是执行thread的时候,发现当前线程直接为空了。 

 

为什么ThreadLocal值为空

这个问题主要出在Thread上。

我们在Thread代码中找到了这两行

public class Thread implements Runnable 
    ...
 
    ThreadLocal.ThreadLocalMap threadLocals = null;

     
    ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
   
    ...

每个主线程都会有一个自己的ThreadLocalMap,所以子线程在调用get方法拿值的时候其实访问的是自己的ThreadLocalMap,这个Map和主线程的Map是两个不同的对象,所以肯定是拿不到值的。ThreadLocalMap初始值是null,所以返回就是null了。这个没毛病

那么,inheritableThreadLocals初始化也为null,为什么它就有值呢?

Thread初探

 

Thread自己怎么玩的

在研究这个之前,我们先看下Thread自己是怎么玩的(初始化)

   //构造函数
    public Thread(ThreadGroup group, String name) 
        this(group, null, name, 0);
    

    public Thread(Runnable target, String name) 
        this(null, target, name, 0);
    
 
    public Thread(ThreadGroup group, Runnable target, String name,
                  long stackSize) 
        this(group, target, name, stackSize, null, true);
    

...

最后它们都甩锅给了它:private Thread

private Thread(ThreadGroup g, Runnable target, String name,
                   long stackSize, AccessControlContext acc,
                   boolean inheritThreadLocals) 
        if (name == null) 
            throw new NullPointerException("name cannot be null");
        

        this.name = name;

        Thread parent = currentThread();
        SecurityManager security = System.getSecurityManager();
        if (g == null) 
            /* Determine if it's an applet or not */

            /* If there is a security manager, ask the security manager
               what to do. */
            if (security != null) 
                g = security.getThreadGroup();
            

            /* If the security manager doesn't have a strong opinion
               on the matter, use the parent thread group. */
            if (g == null) 
                g = parent.getThreadGroup();
            
        

        /* checkAccess regardless of whether or not threadgroup is
           explicitly passed in. */
        g.checkAccess();

        /*
         * Do we have the required permissions?
         */
        if (security != null) 
            if (isCCLOverridden(getClass())) 
                security.checkPermission(
                        SecurityConstants.SUBCLASS_IMPLEMENTATION_PERMISSION);
            
        

        g.addUnstarted();

        this.group = g;
        this.daemon = parent.isDaemon();
        this.priority = parent.getPriority();
        if (security == null || isCCLOverridden(parent.getClass()))
            this.contextClassLoader = parent.getContextClassLoader();
        else
            this.contextClassLoader = parent.contextClassLoader;
        this.inheritedAccessControlContext =
                acc != null ? acc : AccessController.getContext();
        this.target = target;
        setPriority(priority);
        if (inheritThreadLocals && parent.inheritableThreadLocals != null)
            this.inheritableThreadLocals =
                ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
        /* Stash the specified stack size in case the VM cares */
        this.stackSize = stackSize;

        /* Set thread ID */
        this.tid = nextThreadID();
    。。。

我们可以看到,默认情况下,inheritThreadLocals的值是true。也就是设置inheritableThreadLocal默认是可传递的。

ThreadLocal.createInheritedMap

我们可以看到上面的代码中这么一行代码,来进行创建inheritedMap的。

我们继续剖析createInheritedMap源码

在createInheritedMap中,将所有的父线程中的Map的值,使用for的方式全部复制到子线程中。

     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) 
        return new ThreadLocalMap(parentMap);
     

        /**
         * 构建一个新的ThreadLocalsMap,这个ThreadLocalsMap包含所有parentMap中
         * Inheritable ThreadLocals. 它只能被createInheritedMap调用.
         *
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) 
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (Entry e : parentTable) 
                if (e != null) 
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) 
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    
                
            
        

 

总结

所以,Thread类中包含的 threadLocalsinheritableThreadLocals 两个变量,inheritableThreadLocals 可自动向子线程中传递的ThreadLocal.ThreadLocalMap。这样,在你进行get()操作的时候,自然就能输出值了。

 

以上是关于ThreadLocal精进篇:子线程类InheritableThreadLocal的主要内容,如果未能解决你的问题,请参考以下文章

子线程如何获取父线程ThreadLocal的值

京东一面:子线程如何获取父线程 ThreadLocal 的值?我蒙了。。。

深入浅出Java并发编程指南「源码分析篇」透析ThreadLocal线程私有区域的运作机制和源码体系

随笔篇-ThreadLocal原理分析

如何将ThreadLocal传递到子线程

InheritableThreadLocal的使用