NVIDIA NCCL 源码学习- 机器间channel连接
Posted KIDGINBROOK
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NVIDIA NCCL 源码学习- 机器间channel连接相关的知识,希望对你有一定的参考价值。
上节中完成了单机内部的channel搜索,仍然以ringGraph为例的话,相当于在单台机器内部搜索出来了一系列的环,接下来需要将机器之间的环连接起来。
为了方便理解假设两机十六卡的情况下第一台机器的一个ring为:
graph->intra: GPU/0 GPU/7 GPU/6 GPU/3 GPU/2 GPU/5 GPU/4 GPU/1
graph->inter: NET/0 NET/0
第二个机器对应的ring为:
graph->intra: GPU/10 GPU/9 GPU/8 GPU/13 GPU/12 GPU/15 GPU/14 GPU/11
graph->inter: NET/0 NET/0
allGather3Data用于rank间聚合channel的信息,ncclGraphInfo记录了环的信息,比如speed和type
struct ncclGraphInfo
int sameChannels;
float speedIntra;
float speedInter;
int typeIntra;
;
struct
int cudaCompCap;
int fullCudaCompCap;
int nChannels;
struct ncclGraphInfo tree;
struct ncclGraphInfo ring;
struct ncclGraphInfo collNet;
struct ncclTopoRanks topoRanks;
*allGather3Data;
NCCLCHECK(ncclCalloc(&allGather3Data, nranks));
allGather3Data[rank].cudaCompCap = ncclCudaCompCap();
allGather3Data[rank].nChannels = comm->nChannels = treeGraph.nChannels = ringGraph.nChannels =
std::min(treeGraph.nChannels, ringGraph.nChannels);
...
allGather3Data[rank].ring.sameChannels = ringGraph.sameChannels;
allGather3Data[rank].ring.speedIntra = ringGraph.speedIntra;
allGather3Data[rank].ring.speedInter = ringGraph.speedInter;
allGather3Data[rank].ring.typeIntra = ringGraph.typeIntra;
...
然后开始设置ncclTopoRanks,获取当前rank在ring中的prev和next,其中第一个rank的prev和最后一个rank的next为-1,如rank6的prev为7,next为3;获取当前ring的ringRecv和ringSend,即ring的第一个节点和最后一个节点,最后将搜索到的环复制了一遍,这里在官方issue中看到相关解释是为了进一步的并行以充分利用带宽。
struct ncclTopoRanks
int ringRecv[MAXCHANNELS];
int ringSend[MAXCHANNELS];
int ringPrev[MAXCHANNELS];
int ringNext[MAXCHANNELS];
int treeUpRecv[MAXCHANNELS];
int treeUpSend[MAXCHANNELS];
int treeDnRecv[MAXCHANNELS];
int treeDnSend[MAXCHANNELS];
;
ncclResult_t ncclTopoPreset(struct ncclComm* comm,
struct ncclTopoGraph* treeGraph, struct ncclTopoGraph* ringGraph, struct ncclTopoGraph* collNetGraph,
struct ncclTopoRanks* topoRanks)
int rank = comm->rank;
int localRanks = comm->localRanks;
int nChannels = comm->nChannels;
for (int c=0; c<nChannels; c++)
struct ncclChannel* channel = comm->channels+c;
channel->ring.prev = channel->ring.next = -1;
...
int* ringIntra = ringGraph->intra+c*localRanks;
int* treeIntra = treeGraph->intra+c*localRanks;
int* collNetIntra = collNetGraph->intra+c*localRanks;
for (int i=0; i<localRanks; i++)
if (ringIntra[i] == rank)
topoRanks->ringRecv[c] = ringIntra[0];
topoRanks->ringSend[c] = ringIntra[localRanks-1];
channel->ring.prev = (i == 0) ? -1 : ringIntra[i-1];
channel->ring.next = (i == localRanks-1) ? -1 : ringIntra[i+1];
...
topoRanks->ringPrev[c] = channel->ring.prev;
topoRanks->ringNext[c] = channel->ring.next;
// Duplicate channels rings/trees
struct ncclChannel* channel0 = comm->channels;
struct ncclChannel* channel1 = channel0+nChannels;
memcpy(channel1, channel0, nChannels*sizeof(struct ncclChannel));
return ncclSuccess;
然后通过bootstrapAllGather获取全局的allGather3Data信息,计算出当前rank所在的node保存在comm->node,以及每个node的第一个rank保存在nodesFirstRank,因此例子中:
nodesFirstRank[0]: 0
nodesFirstRank[1]: 10
然后开始将每个机器的环首尾相连组成大环。
ncclResult_t ncclTopoPostset(struct ncclComm* comm, int* firstRanks, struct ncclTopoRanks** allTopoRanks, int* rings)
// Gather data from all ranks
int *ringRecv, *ringSend, *ringPrev, *ringNext, *treeUpRecv, *treeUpSend, *treeDnRecv,*treeDnSend;
int nranks = comm->nRanks;
int nChannels = comm->nChannels;
NCCLCHECK(ncclCalloc(&ringRecv, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&ringSend, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&ringPrev, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&ringNext, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&treeUpRecv, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&treeUpSend, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&treeDnRecv, nranks*MAXCHANNELS));
NCCLCHECK(ncclCalloc(&treeDnSend, nranks*MAXCHANNELS));
for (int i=0; i<nranks; i++)
for (int c=0; c<nChannels;c++)
ringRecv[c*nranks+i] = allTopoRanks[i]->ringRecv[c];
ringSend[c*nranks+i] = allTopoRanks[i]->ringSend[c];
ringPrev[c*nranks+i] = allTopoRanks[i]->ringPrev[c];
ringNext[c*nranks+i] = allTopoRanks[i]->ringNext[c];
treeUpRecv[c*nranks+i] = allTopoRanks[i]->treeUpRecv[c];
treeUpSend[c*nranks+i] = allTopoRanks[i]->treeUpSend[c];
treeDnRecv[c*nranks+i] = allTopoRanks[i]->treeDnRecv[c];
treeDnSend[c*nranks+i] = allTopoRanks[i]->treeDnSend[c];
// Connect rings and trees. This should also duplicate the channels.
NCCLCHECK(connectRings(comm, ringRecv, ringSend, ringPrev, ringNext, firstRanks));
NCCLCHECK(connectTrees(comm, treeUpRecv, treeUpSend, treeDnRecv, treeDnSend, firstRanks));
// Duplicate ringPrev/ringNext for ncclBuildRing
memcpy(ringPrev+nChannels*nranks, ringPrev, nChannels*nranks*sizeof(int));
memcpy(ringNext+nChannels*nranks, ringNext, nChannels*nranks*sizeof(int));
// Duplication should be complete now
nChannels = comm->nChannels = std::min(MAXCHANNELS,nChannels*2);
// Honor NCCL_MIN_NRINGS/NCCL_MAX_NRINGS.
// We permit combining max, then min, to only use the first channels, then duplicate them.
nChannels = comm->nChannels = std::min((int)ncclMaxNchannels(), nChannels);
int c;
for (c=nChannels; c<ncclMinNchannels(); c++)
memcpy(ringPrev+c*nranks, ringPrev+(c-nChannels)*nranks, nranks*sizeof(int));
memcpy(ringNext+c*nranks, ringNext+(c-nChannels)*nranks, nranks*sizeof(int));
memcpy(comm->channels+c, comm->channels+c-nChannels, sizeof(struct ncclChannel));
nChannels = comm->nChannels = c;
// Create rings array and check all is fine
NCCLCHECK(ncclBuildRings(nChannels, rings, comm->rank, comm->nRanks, ringPrev, ringNext));
free(ringRecv);
free(ringSend);
free(ringPrev);
free(ringNext);
free(treeUpRecv);
free(treeUpSend);
free(treeDnRecv);
free(treeDnSend);
return ncclSuccess;
这里将所有channel的prev,next,send,recv信息打平到数组中,例如recv[0]表示第一个ring中rank0的recv是哪个rank,然后开始计算当前机器第一个rank的prev和最后一个rank的next。
static ncclResult_t connectRings(struct ncclComm* comm, int* ringRecv, int* ringSend, int* ringPrev, int* ringNext, int* firstRanks)
int nChannels = comm->nChannels;
int nNodes = comm->nNodes;
for (int c=0; c<nChannels; c++)
int* recv = ringRecv+c*comm->nRanks;
int* send = ringSend+c*comm->nRanks;
int* prev = ringPrev+c*comm->nRanks;
int* next = ringNext+c*comm->nRanks;
struct ncclChannel* channel0 = comm->channels+c;
struct ncclChannel* channel1 = channel0+nChannels;
for (int n=0; n<nNodes; n++)
int recvRank = recv[firstRanks[n]];
int prevSendRank = send[firstRanks[(n-1+nNodes)%nNodes]];
prev[recvRank] = prevSendRank;
if (comm->rank == recvRank)
channel0->ring.prev = prevSendRank;
channel1->ring.prev = prevSendRank;
int sendRank = send[firstRanks[n]];
int nextRecvRank = recv[firstRanks[(n+1)%nNodes]];
next[sendRank] = nextRecvRank;
if (comm->rank == sendRank)
channel0->ring.next = nextRecvRank;
channel1->ring.next = nextRecvRank;
TRACE(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c, channel0->ring.prev, comm->rank, channel0->ring.next);
TRACE(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c+nChannels, channel1->ring.prev, comm->rank, channel1->ring.next);
return ncclSuccess;
如上所示,当前机器recv rank的prev就是前一个机器的send rank,当前机器send rank的next就是下一个机器的recv rank。然后执行ncclBuildRings按照大环的顺序依次记录rank到rings。
ncclResult_t ncclBuildRings(int nrings, int* rings, int rank, int nranks, int* prev, int* next)
for (int r=0; r<nrings; r++)
char prefix[30];
int current = rank;
for (int i=0; i<nranks; i++)
rings[r*nranks+i] = current;
current = next[r*nranks+current];
...
// Check that all ranks are there
for (int i=0; i<nranks; i++)
int found = 0;
for (int j=0; j<nranks; j++)
if (rings[r*nranks+j] == i)
found = 1;
break;
if (found == 0)
WARN("Error : ring %d does not contain rank %d", r, i);
return ncclInternalError;
return ncclSuccess;
还是以上述为例,其中rank6记录的rings的第一个大环为:
GPU/6 GPU/3 GPU/2 GPU/5 GPU/4 GPU/1 GPU/10 GPU/9 GPU/8 GPU/13 GPU/12 GPU/15 GPU/14 GPU/11 GPU/0 GPU/7
到这里就完成了机器之间大环建立,每个rank都知道自己的上一个和下一个rank是谁,那么就可以建立实际的通信链路了。
接下来每个rank都要为通信分配一些内存,为了提高性能,这里会在分配buffer之前设置cpu亲和性,使得分配的内存尽量是当前numa本地的。
cpu_set_t affinitySave;
sched_getaffinity(0, sizeof(cpu_set_t), &affinitySave);
NCCLCHECK(ncclTopoSetAffinity(comm->topo, comm->rank));
ncclResult_t ncclTopoSetAffinity(struct ncclTopoSystem* system, int rank)
struct ncclTopoNode* cpu = NULL, *gpu = NULL;
for (int g=0; g<system->nodes[GPU].count; g++)
if (system->nodes[GPU].nodes[g].gpu.rank == rank)
gpu = system->nodes[GPU].nodes+g;
// Find closer CPU
int cpuIndex = -1, minHops = 0;
for (int c=0; c<system->nodes[CPU].count; c++)
int nHops = system->nodes[GPU].nodes[g].paths[CPU][c].count;
if (cpuIndex == -1 || nHops < minHops)
cpuIndex = c;
minHops = nHops;
cpu = system->nodes[CPU].nodes+cpuIndex;
if (cpu == NULL)
WARN("Set CPU affinity : unable to find GPU/CPU for rank %d", rank);
return ncclInternalError;
// Query the CPU affinity set we were provided
cpu_set_t mask;
SYSCHECK(sched_getaffinity(0, sizeof(cpu_set_t), &mask), "sched_getaffinity");
// Get the affinity of the CPU close to our GPU.
cpu_set_t cpuMask = cpu->cpu.affinity;
cpu_set_t finalMask;
if (ncclParamIgnoreCpuAffinity())
// Ignore the CPU affinity set and use the GPU one instead
finalMask = cpuMask;
else
// Use a subset of the GPU affinity set
CPU_AND(&finalMask, &mask, &cpuMask);
// If there is a non empty set, use it to set affinity
if (CPU_COUNT(&finalMask))
char affinityStr[sizeof(cpu_set_t)*2];
NCCLCHECK(ncclCpusetToStr(&finalMask, affinityStr));
INFO(NCCL_INIT, "Setting affinity for GPU %d to %s", gpu->gpu.dev, affinityStr);
SYSCHECK(sched_setaffinity(0, sizeof(cpu_set_t), &finalMask), "sched_setaffinity");
return ncclSuccess;
首先获取当前线程的cpu亲和性保存到affinitySave,分配好buffer之后会用affinitySave来恢复亲和性。
然后通过ncclTopoSetAffinity设置cpu亲和性,找到当前rank对应的cpu节点之后,可以获取到该cpu对应的core,即cpuMask,然后获取当前线程对应的亲和性,即mask,默认会取cpuMask和mask的交集finalMask,如果交集不为空的话,会将finalMask设置给当前线程。
struct ncclConnect
char data[CONNECT_SIZE];
;
struct ncclConnect *connect;
NCCLCHECKGOTO(ncclCalloc(&connect, 2), ret, affinity_restore);
for (int c=0; c<comm->nChannels; c++)
struct ncclChannel* channel = comm->channels+c;
NCCLCHECKGOTO(setupChannel(comm, c, rank, nranks, rings+c*nranks), ret, affinity_restore);
if (comm->nRanks == 1) continue;
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, channel, 1, &channel->ring.prev, 1, &channel->ring.next), ret, affinity_restore);
...
然后简单看下ncclChannel数据结构,其中collectives保存了用户向nccl提交的通信操作,比如ncclSend,ncclRecv等都会向collectives里加一项,ncclColl则保存了这些操作对应的参数;collectives是一个环形队列,所以collStart指向了开始位置,collCount表示队列中操作数量;FifoHead和FifoTail用于协调kernel产出数据和NET发送数据,其实就是生产者消费者,ncclPeer保存了通信相关的信息,后续再具体介绍。
struct ncclRing
// Shortcuts for userRanks[1] and userRanks[n-1]
int prev; // 记录环中当前rank的上一个rank
int next; // 记录环中当前rank的下一个rank
// Maps an internal nccl index to user-specified rank order. This is necessary
// since we need to know how the user expects data to be ordered across
// devices. Ordered from current device.
int* userRanks; // 以当前rank为起点记录整个环
int* devUserRanks; // device断的userRanks
;
struct ncclChannel
union
struct
struct ncclRing ring;
struct ncclTree treeUp;
struct ncclTree treeDn;
struct ncclTree collTreeUp;
struct ncclTree collTreeDn;
int id;
// Communication structures
struct ncclPeer* peers;
struct ncclPeer* devPeers;
// Operation list for aggregation
struct ncclColl* collectives;
int collStart;
int collCount;
int collFifoHead; // Only used by GPU
int collFifoTail; // Only used by CPU
;
int data[0x80];
;
;
然后开始初始化channel,initChannel主要是buffer的分配,分配userRanks和devUserRanks,设置ncclPeer,分配collectives,因为host和device都会访问collectives这个数据结构,所以需要通过cudaHostAlloc分配host端的锁页内存,并通过flag cudaHostAllocMapped将其映射到cuda的地址空间。不过在uva系统上,cudaMallocHost,cudaHostAlloc + cudaHostAllocDefault以及cudaHostAlloc + cudaHostAllocMapped这三种方式没啥区别,host和device都可以访问。
ncclResult_t initChannel(struct ncclComm* comm, int channelid)
struct ncclChannel* channel = comm->channels+channelid;
if (channel->id != -1) return ncclSuccess;
channel->id = channelid;
// Ring index to user rank table.
NCCLCHECK(ncclCudaCalloc(&channel->ring.devUserRanks, comm->nRanks));
NCCLCHECK(ncclCalloc(&channel->ring.userRanks, comm->nRanks));
// Communication structures with peers.
NCCLCHECK(ncclCudaCalloc(&channel->devPeers, comm->nRanks+1)); // The extra one rank is for collnet root (i.e. network)
NCCLCHECK(ncclCalloc(&channel->peers, comm->nRanks+1));
for (size_t i=0; i<comm->nRanks+1; ++i)
channel->peers[i].send.comm = comm;
channel->peers[i].recv.comm = comm;
// Per-channel operation list.
NCCLCHECK(ncclCudaHostCalloc(&channel->collectives, NCCL_MAX_OPS));
return ncclSuccess;
template <typename T>
static ncclResult_t ncclCudaHostCalloc(T** ptr, size_t nelem)
CUDACHECK(cudaHostAlloc(ptr, nelem*sizeof(T), cudaHostAllocMapped));
memset(*ptr, 0, nelem*sizeof(T));
return ncclSuccess;
然后从当前rank为起点,将环写到userRanks。
static ncclResult_t setupChannel(struct ncclComm* comm, int channelId, int rank, int nranks, int* ringRanks)
TRACE(NCCL_INIT, "rank %d nranks %d", rank, nranks);
NCCLCHECK(initChannel(comm, channelId));
struct ncclRing* ring = &comm->channels[channelId].ring;
// Reorganize ranks to start with rank.
int shift;
for (shift = 0; shift<nranks; shift++)
if (ringRanks[shift] == rank)
break;
for (int i=0; i<nranks; i++)
ring->userRanks[i] = ringRanks[(i+shift)%nranks];
return ncclSuccess;
然后执行ncclTransportP2pSetup建立当前rank和prev,next的通信链路。
到这里就完成了机器之间channel的连接,下节会了解到通信链路的建立过程。
以上是关于NVIDIA NCCL 源码学习- 机器间channel连接的主要内容,如果未能解决你的问题,请参考以下文章
NVIDIA NCCL 源码学习- bootstrap网络连接的建立
NVIDIA NCCL 源码学习- bootstrap网络连接的建立
NVIDIA NCCL 源码学习- bootstrap网络连接的建立
NVIDIA NCCL 源码学习- 数据通信链路transport的建立