力扣刷题:填充每个节点的下一个右侧节点指针(java实现)

Posted 谦谦均

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了力扣刷题:填充每个节点的下一个右侧节点指针(java实现)相关的知识,希望对你有一定的参考价值。

题目:给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node 
  int val;
  Node *left;
  Node *right;
  Node *next;

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

示例:

输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]

解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,’#’ 标志着每一层的结束。

提示:

  • 树中节点的数量少于 4096
  • -1000 <= node.val <= 1000

相关标签:深度优先搜索广度优先搜索二叉树

迭代解法:可以维护一个队列,用来存储当前每行的结点,在每次循环当前行的时候,将其左右结点添加到队尾。具体代码如下:

public Node connect(Node root) 
        //判断二叉树是不是空
        if(root==null)
            return root;
        
        //定义一个队列,维护当前层的结点
        Queue<Node> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty())
            //获取队列的长度
            int size = queue.size();
            //队列第一个元素出队
            Node first = queue.poll();
            //将第一个元素的左结点添加到队尾
            if(first.left!=null)
                queue.offer(first.left);
                //因为是满二叉树,左右结点都是同时存在的
                queue.offer(first.right);
            
            //循环剩下的当前行元素,不包括刚才添加的左右结点
            while (size-1>0)
                //队头出队
                Node second = queue.poll();
                //左结点添加到队尾
                if(second.left!=null)
                    queue.offer(second.left);
                    queue.offer(second.right);
                
                //指定next属性
                first.next = second;
                //迭代first结点
                first = second;
                size--;
            
        
    return root;
    

这种解法时间和空间复杂度都比较高,但是思路比较清晰。接下来看一下官方的进阶解法,官方解法地址

(方法一不展示了,跟上面的有点类似。)

方法二:使用已建立的 next 指针
思路

一棵树中,存在两种类型的 next 指针。

  1. 第一种情况是连接同一个父节点的两个子节点。它们可以通过同一个节点直接访问到,因此执行下面操作即可完成连接。node.left.next = node.right

  2. 第二种情况在不同父亲的子节点之间建立连接,这种情况不能直接连接。

如果每个节点有指向父节点的指针,可以通过该指针找到next 节点。如果不存在该指针,则按照下面思路建立连接:

第 N层节点之间建立 next 指针后,再建立第N+1 层节点的next指针。可以通过 next 指针访问同一层的所有节点,因此可以使用第 N 层的 next指针,为第N+1 层节点建立next 指针。

算法

  • 从根节点开始,由于第 0 层只有一个节点,所以不需要连接,直接为第 1 层节点建立next指针即可。该算法中需要注意的一点是,当我们为第 N 层节点建立 next 指针时,处于第N−1 层。当第N 层节点的next 指针全部建立完成后,移至第 N 层,建立第 N+1 层节点的next 指针。
  • 遍历某一层的节点时,这层节点的next指针已经建立。因此我们只需要知道这一层的最左节点,就可以按照链表方式遍历,不需要使用队列。
  • 上面思路的伪代码如下:
leftmost = root
while (leftmost.left != null) 
    head = leftmost
    while (head.next != null) 
        1) Establish Connection 1
        2) Establish Connection 2 using next pointers
        head = head.next
    
    leftmost = leftmost.left

  • 两种类型的 next 指针。

  • 第一种情况两个子节点属于同一个父节点,因此直接通过父节点建立两个子节点的next 指针即可。node.left.next = node.right

  • 第二种情况是连接不同父节点之间子节点的情况。更具体地说,连接的是第一个父节点的右孩子和第二父节点的左孩子。由于已经在父节点这一层建立了next 指针,因此可以直接通过第一个父节点的next指针找到第二个父节点,然后在它们的孩子之间建立连接。node.right.next = node.next.left

  • 完成当前层的连接后,进入下一层重复操作,直到所有的节点全部连接。进入下一层后需要更新最左节点,然后从新的最左节点开始遍历该层所有节点。因为是完美二叉树,因此最左节点一定是当前层最左节点的左孩子。如果当前最左节点的左孩子不存在,说明已经到达该树的最后一层,完成了所有节点的连接。

    代码如下:

class Solution 
    public Node connect(Node root) 
        if (root == null) 
            return root;
        
        // 从根节点开始
        Node leftmost = root;
        while (leftmost.left != null) 
            // 遍历这一层节点组织成的链表,为下一层的节点更新 next 指针
            Node head = leftmost;
            while (head != null) 
                // CONNECTION 1
                head.left.next = head.right;
                // CONNECTION 2
                if (head.next != null) 
                    head.right.next = head.next.left;
                
                // 指针向后移动
                head = head.next;
            
            // 去下一层的最左的节点
            leftmost = leftmost.left;
        
        return root;
    

复杂度分析:

时间复杂度:O(N)O(N),每个节点只访问一次。
空间复杂度:O(1)O(1),不需要存储额外的节点。

以上是关于力扣刷题:填充每个节点的下一个右侧节点指针(java实现)的主要内容,如果未能解决你的问题,请参考以下文章

刷题-力扣-116. 填充每个节点的下一个右侧节点指针

力扣_中级算法_树和图_4~6题_和_回溯算法_第1题

LeetCode 0117. 填充每个节点的下一个右侧节点指针 II

116. 填充每个节点的下一个右侧节点指针

[leetcode-117]填充每个节点的下一个右侧节点指针 II

Leetcode 116. 填充每个节点的下一个右侧节点指针