整理:数据结构与算法之二叉树

Posted 阿征new

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了整理:数据结构与算法之二叉树相关的知识,希望对你有一定的参考价值。

1、概述

通过前面的学习,我们知道,

有序数组可以利用二分查找法快速的查找特定的值,时间复杂度为O(log2N),但是插入数据时很慢,时间复杂度为O(N)

链表的插入和删除速度都很快,时间复杂度为O(1),但是查找特定值很慢,时间复杂度为O(N)

那么,有没有一种数据结构既能像有序数组那样快速的查找数据,又能像链表那样快速的插入数据呢?

树就能满足这种要求,不过依然是以算法的复杂度为代价。

在编程的世界里,有一个真理叫“复杂度守恒定律”(当然,这是我杜撰的),一个程序当它降低了一个方面的复杂度,必然会在其他方面增加复杂度。这就跟谈恋爱一样,也没有无缘无故的爱,没有无缘无故的恨,当你跟程序谈恋爱时,没有无缘无故的易用性,也没有无缘无故的复杂度。

我们先从广义上来讨论一下树的概念。

下面是一个普通的非二叉树:

 

在程序中,节点一般用来表示实体,也就是数据结构里存储的那些数据项,在java这样的面向对象的编程语言中,常用节点来表示对象。
节点间的边表示关联节点间的路径,沿着路径,从一个节点到另一个节点很容易,也很快,在树中,从一个节点到另一个节点的唯一方法就是顺着边前进。java语言中,常用引用来表示边(C/C++中一般使用指针)。

树的顶层总是只有一个节点,它通过边连接到第二层的多个节点,然后第二层也可以通过边连接到第三层,以此类推。所以树的顶部小,底部大,呈倒金字塔型,这和现实世界中的树是相反的。

如果树的每个节点最多有两个子节点,则称为二叉树。如果节点的子节点可以多余两个,称为多路树

有很多关于树的术语,在这里不做过多的文字解释,下面给出一个图例,通过它可以直观地理解树的路径、根、父节点、子节点、叶节点、子树、层等概念。

 

需要注意的是,从树的根到任意节点有且只有一条路径可以到达,下图所示就不是一棵树,它违背了这一原则:

 

2、二叉搜索树

我们从一种特殊的、使用很广泛的二叉树入手:二叉搜索树

二叉搜索树的特点是,一个节点的左子节点的关键字值小于这个节点,右子节点的关键字值大于或等于这个父节点

下图就是一个二叉搜索树的示例:

 

关于树,还有一个平衡树非平衡树的概念。非平衡就是说树的大部分节点在根的一边,如下图所示:

 

树的不平衡是由数据项插入的顺序造成的。如果关键字是随机插入的,树会更趋向于平衡,如果插入顺序是升序或者降序,则所有的值都是右子节点或左子节点,这样生成的树就会不平衡了,非平衡树的效率会严重退化。

接下来我们就用java语言实现一个二叉搜索树,并给出查找、插入、遍历、删除节点的方法。

首先要有一个封装节点的类,这个类包含节点的数据以及它的左子节点和右子节点的引用。

 

//树节点的封装类
public class Node 
    int age;
    String name;
    Node leftChild;  //左子节点的引用
    Node rightChild; //右子节点的引用
    
    public Node(int age,String name)
        this.age = age;
        this.name = name;
    
    
    //打印该节点的信息
    public void displayNode()
        System.out.println("name:"+name+",age:"+age);
    

以上agename两个属性用来代表该节点存储的信息,更好的方法是将这些属性封装成一个对象,例如:

 

Person
    private int age;
    private String name;

    public void setAge(int age)
        this.age = age;
    

    public int getAge()
        return this.age;
    

    public void setName(String name)
        this.name = name;
    

    public String getName()
        return this.name;
    


这样做才更符合“面向对象”的编程思想。不过现在我们的重点是数据结构而非编程思想,所以在程序中简化了。

由于树的结构和算法相对复杂,我们先逐步分析一下查找、插入等操作的思路,然后再写出整个的java类。

2.1 查找

我们已经知道,二叉搜索树的特点是左子节点小于父节点,右子节点大于或等于父节点。查找某个节点时,先从根节点入手,如果该元素值小于根节点,则转向左子节点,否则转向右子节点,以此类推,直到找到该节点,或者到最后一个叶子节点依然没有找到,则证明树中没有该节点。

比如我们要在树中查找57,执行的搜索路线如下图所示:

 

2.2 插入

插入一个新节点首先要确定插入的位置,这个过程类似于查找一个不存在的节点。如下图所示:

 

找到要插入的位置之后,将父节点的左子节点或者右子节点指向新节点即可

2.3 遍历

遍历的意思是根据一种特定顺序访问树的每一个节点。

有三种简单的方法遍历树:

  • 前序遍历
  • 中序遍历
  • 后序遍历

二叉搜索树最常用的方法是中序遍历,中序遍历二叉搜索树会使所有的节点按关键字升序被访问到

遍历树最简单的方法是递归。用该方法时,只需要做三件事(初始化时这个节点是根):

  • 调用自身来遍历节点的左子树
  • 访问这个节点
  • 调用自身来遍历节点的右子树

遍历可以应用于任何二叉树,而不只是二叉搜索树。遍历的节点并不关心节点的关键字值,它只看这个节点是否有子节点
下图展示了中序遍历的过程:

 

对于每个节点来说,都是先访问它的左子节点,然后访问自己,然后在访问右子节点。

如果是前序遍历呢?就是先访问父节点,然后左子节点,最后右子节点;同理,后序遍历就是先访问左子节点,在访问右子节点,最后访问父节点。所谓的前序、中序、后序是针对父节点的访问顺序而言的。

A:根节点、B:左节点、C:右节点,

前序顺序是ABC(根节点排最先,然后同级先左后右);

中序顺序是BAC(先左后根最后右);

后序顺序是BCA(先左后右最后根)

2.4 查找最值

在二叉搜索树中,查找最大值、最小是是很容易实现的,从根循环访问左子节点,直到该节点没有左子节点为止,该节点就是最小值;从根循环访问右子节点,直到该节点没有右子节点为止,该节点就是最大值。

下图就展示了查找最小值的过程:

 

2.5 删除节点

树的删除节点操作是最复杂的一项操作。该操作需要考虑三种情况考虑:

  • 该节点没有子节点
  • 该节点有一个子节点
  • 该节点有两个子节点

第一种没有子节点的情况很简单,只需将父节点指向它的引用设置为null即可:

 

第二种情况也不是很难,这个节点有两个连接需要处理:父节点指向它的引用和它指向子节点的引用。无论要删除的节点下面有多复杂的子树,只需要将它的子树上移:

 

还有一种特殊情况需要考虑,就是要删除的是根节点,这时就需要把它唯一的子节点设置成根节点。

下面来看最复杂的第三种情况:要删除的节点有两个子节点。显然,这时候不能简单地将子节点上移,因为该节点有两个节点,右子节点上移之后,该右子节点的左子节点和右子节点又怎么安排呢?

 

这是应该想起,二叉搜索树是按照关键升序排列,对每一个关键字来说,比它关键字值高的节点是它的中序后继,简称后继。删除有两个子节点的节点,应该用它的中序后继来替代该节点。

 

上图中,我们先列出中序遍历的顺序:

5 15 20 25 30 35 40

可以看到,25的后继是35,所以应该用30来替代25的位置。实际上就是找到比欲删除节点的关键字值大的集合中的最小值。从树的结构上来说,就是从欲删除节点的右子节点开始,依次跳到下一层的左子节点,直到该左子节点没有左子节点为止。下图就是找后继节点的示例:

 

从上图中可以看到,后继结点有两种情况:一种是欲删除节点的右子节点没有左子节点,那么它本身就是后继节点,此时,只需要将以此后继节点为根的子树移到欲删除节点的位置:

 

另一种情况是欲删除节点的右子节点有左子节点,这种情况就比较复杂,下面来逐步分析。首先应该意识到,后继节点是肯定没有左子节点的,但是可能会有右子节点。

 

上图中,75为欲删除节点,77为它的后继节点,树变化的步骤如下:

  • 把87的左子节点设置为79;
  • 把77的右子节点设为以87为根的子树;
  • 把50的右子节点设置为以77为根的子树;
  • 把77的左子节点设置为62

到此为止,删除操作终于分析完毕,包含了所有可能出现的情况。可见,二叉树的删除是一件非常棘手的工作,那么我们就该反思了,删除是必须要做的任务吗?有没有一种方法避开这种烦人的操作?有困难要上,没有困难创造困难也要上的二货精神是不能提倡的。

节点逻辑删除:

在删除操作不是很多的情况下,可以在节点类中增加一个布尔字段,来作为该节点是否已删除的标志。在进行其他操作,比如查找时,之前对该节点是否已删除进行判断。这种思路有点逃避责任,但是在很多时候还是很管用的。本例中为了更好的深入理解二叉树,会采用原始的、复杂的删除方法。

3、实例

下面我们就根据上面的分析,写出一个完整的二叉搜索树类,该类中,如果有重复值,插入到右子节点,查找时也只返回第一个找到的节点。

 

import java.util.ArrayList;
import java.util.List;

//二叉搜索树的封装类
public class BinaryTree 
    private Node root;  //根节点
    
    public BinaryTree()
        root = null;
    
    
    //按关键字查找节点
    public Node find(int key)
        Node cur = root;  //从根节点开始查找
        
        if(cur == null)  //如果树为空,直接返回null
            return null;
        
        
        while(cur.age != key)
            if(key < cur.age) 
                cur = cur.leftChild;  //如果关键字比当前节点小,转向左子节点
            else
                cur = cur.leftChild;  //如果关键字比当前节点大,转向右子节点
            
            
            if(cur == null)  //没有找到结果,搜索结束
                return null;
            
        
        return cur;
    
    
    //插入新节点
    public void insert(Node node)
        if(root == null)
            root = node;  //如果树为空,则新插入的节点为根节点
        else
            Node cur = root;  
            
            while(true)  
                if(node.age < cur.age)
                    if(cur.leftChild == null)  //找到了要插入节点的父节点
                        cur.leftChild = node;
                        return;
                    
                    cur = cur.leftChild;
                else
                    if(cur.rightChild == null)  //找到了要插入节点的父节点
                        cur.rightChild = node;
                        return;
                    
                    cur = cur.rightChild;
                
            
        
    
    
    //删除指定节点
    public boolean delete(Node node)
        if(root == null)
            return false;  //如果为空树,直接返回false
        
        
        boolean isLeftChild = true;  //记录目标节点是否为父节点的左子节点
        Node cur= root;  //要删除的节点
        Node parent = null; //要删除节点的父节点
        
        while(cur.age != node.age)  //确定要删除节点和它的父节点
            parent = cur;
            if(node.age < cur.age)  //目标节点小于当前节点,跳转左子节点
                cur = cur.leftChild;
            else//目标节点大于当前节点,跳转右子节点
                isLeftChild = false;
                cur = cur.rightChild;
            
            if(cur == null)
                return false;  //没有找到要删除的节点
            
        
    
        if(cur.leftChild == null && cur.rightChild == null)  //目标节点为叶子节点(无子节点)
            if(cur == root)  //要删除的为根节点
                root = null;
            else if(isLeftChild) 
                //要删除的不是根节点,则该节点肯定有父节点,该节点删除后,需要将父节点指向它的引用置空
                parent.leftChild = null;
            else
                parent.rightChild = null;
            
        else if(cur.leftChild == null)  //只有一个右子节点
            if(cur == root)
                root = cur.rightChild;
            else if(isLeftChild)
                parent.leftChild = cur.rightChild;
            else
                parent.rightChild = cur.rightChild;
            
        else if(cur.rightChild == null)  //只有一个左子节点
            if(cur == root)
                root = cur.leftChild;
            else if(isLeftChild)
                parent.leftChild = cur.leftChild;
            else
                parent.rightChild = cur.leftChild;
            
        else  //有两个子节点
            //第一步要找到欲删除节点的后继节点
            Node successor = cur.rightChild;  
            Node successorParent = null;
            while(successor.leftChild != null)
                successorParent = successor;
                successor = successor.leftChild;
            
            //欲删除节点的右子节点就是它的后继,证明该后继无左子节点,则将以后继节点为根的子树上移即可
            if(successorParent == null)  
                if(cur == root)  //要删除的为根节点,则将后继设置为根,且根的左子节点设置为欲删除节点的做左子节点
                    root = successor;
                    root.leftChild = cur.leftChild;
                else if(isLeftChild) 
                    parent.leftChild = successor;
                    successor.leftChild = cur.leftChild;
                else
                    parent.rightChild = successor;
                    successor.leftChild = cur.leftChild;
                
            else //欲删除节点的后继不是它的右子节点
                successorParent.leftChild = successor.rightChild;
                successor.rightChild = cur.rightChild;
                if(cur == root)  
                    root = successor;
                    root.leftChild = cur.leftChild;
                else if(isLeftChild) 
                    parent.leftChild = successor;
                    successor.leftChild = cur.leftChild;
                else
                    parent.rightChild = successor;
                    successor.leftChild = cur.leftChild;
                
            
        
        
        return true;
    
    
    public static final int PREORDER = 1;   //前序遍历
    public static final int INORDER = 2;    //中序遍历
    public static final int POSTORDER = 3;  //中序遍历
    
    //遍历
    public void traverse(int type)
        switch(type)
        case 1:
            System.out.print("前序遍历:\\t");
            preorder(root);
            System.out.println();
            break;
        case 2:
            System.out.print("中序遍历:\\t");
            inorder(root);
            System.out.println();
            break;
        case 3:
            System.out.print("后序遍历:\\t");
            postorder(root);
            System.out.println();
            break;
        
    
    
    //前序遍历
    public void preorder(Node currentRoot)
        if(currentRoot != null)
            System.out.print(currentRoot.age+"\\t");
            preorder(currentRoot.leftChild);
            preorder(currentRoot.rightChild);
        
    
    
    //中序遍历,这三种遍历都用了迭代的思想
    public void inorder(Node currentRoot)
        if(currentRoot != null)
            inorder(currentRoot.leftChild);  //先对当前节点的左子树对进行中序遍历
            System.out.print(currentRoot.age+"\\t"); //然后访问当前节点
            inorder(currentRoot.rightChild);  //最后对当前节点的右子树对进行中序遍历
        
    
    
    //后序遍历
    public void postorder(Node currentRoot)
        if(currentRoot != null)
            postorder(currentRoot.leftChild);
            postorder(currentRoot.rightChild);
            System.out.print(currentRoot.age+"\\t");
        
    
    
    //私有方法,用迭代方法来获取左子树和右子树的最大深度,返回两者最大值
    private int getDepth(Node currentNode,int initDeep)
        int deep = initDeep;  //当前节点已到达的深度
        int leftDeep = initDeep;
        int rightDeep = initDeep;
        if(currentNode.leftChild != null)  //计算当前节点左子树的最大深度
            leftDeep = getDepth(currentNode.leftChild, deep+1);
        
        if(currentNode.rightChild != null)  //计算当前节点右子树的最大深度
            rightDeep = getDepth(currentNode.rightChild, deep+1);
        
        
        return Math.max(leftDeep, rightDeep);
    
    
    //获取树的深度
    public int getTreeDepth()
        if(root == null)
            return 0;
        
        return getDepth(root,1);
    
    
    //返回关键值最大的节点
    public Node getMax()
        if(isEmpty())
            return null;
        
        Node cur = root;
        while(cur.rightChild != null)
            cur = cur.rightChild;
        
        return cur;
    
    
    //返回关键值最小的节点
    public Node getMin()
        if(isEmpty())
            return null;
        
        Node cur = root;
        while(cur.leftChild != null)
            cur = cur.leftChild;
        
        return cur;
    
    
    //以树的形式打印出该树
    public void displayTree()
        int depth = getTreeDepth();
        ArrayList<Node> currentLayerNodes = new ArrayList<Node> ();
        currentLayerNodes.add(root);  //存储该层所有节点
        int layerIndex = 1;
        while(layerIndex <= depth)
            int NodeBlankNum = (int)Math.pow(2, depth-layerIndex)-1;  //在节点之前和之后应该打印几个空位
            for(int i = 0;i<currentLayerNodes.size();i++)
                Node node = currentLayerNodes.get(i);
                printBlank(NodeBlankNum);   //打印节点之前的空位
                
                if(node == null)
                    System.out.print("*\\t");  //如果该节点为null,用空位代替
                else
                    System.out.print("*  "+node.age+"\\t");  //打印该节点
                
                
                printBlank(NodeBlankNum);  //打印节点之后的空位
                System.out.print("*\\t");   //补齐空位
            
            System.out.println();
            layerIndex++;
            currentLayerNodes = getAllNodeOfThisLayer(currentLayerNodes);  //获取下一层所有的节点
        
    
    
    //获取指定节点集合的所有子节点
    private ArrayList getAllNodeOfThisLayer(List parentNodes)
        ArrayList list = new ArrayList<Node>();
        Node parentNode;
        for(int i=0;i<parentNodes.size();i++)
            parentNode = (Node)parentNodes.get(i);
            if(parentNode != null)  
                if(parentNode.leftChild != null)  //如果上层的父节点存在左子节点,加入集合
                    list.add(parentNode.leftChild);
                else
                    list.add(null);  //如果上层的父节点不存在左子节点,用null代替,一样加入集合
                
                if(parentNode.rightChild != null)
                    list.add(parentNode.rightChild);
                else
                    list.add(null);
                
            else  //如果上层父节点不存在,用两个null占位,代表左右子节点
                list.add(null);
                list.add(null);
            
        
        return list;
    
    
    //打印指定个数的空位
    private void printBlank(int num)
        for(int i=0;i<num;i++)
            System.out.print("*\\t");
        
    
    
    //判空
    public boolean isEmpty()
        return (root == null);
    
    
    //判断是否为叶子节点
    public boolean isLeaf(Node node)
        return (node.leftChild != null || node.rightChild != null);
    
    
    //获取根节点
    public Node getRoot()
        return root;
    
    

displayTree方法按照树的形状打印该树。对一颗深度为3的二叉树的打印效果如下图所示:



作者:冰河winner
链接:https://www.jianshu.com/p/bb0c12b34f2a
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

以上是关于整理:数据结构与算法之二叉树的主要内容,如果未能解决你的问题,请参考以下文章

整理:数据结构与算法之二叉树

树与二叉树之二--二叉树的性质与存储

数据结构之二叉树

数据结构之二叉树

数据结构之二叉树

数据结构之二叉树