HashMap实现原理
Posted Gjson
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HashMap实现原理相关的知识,希望对你有一定的参考价值。
首先我们先来回顾一下计算机数据结构里面的哈希表:
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的 数据结构。也就是说,它通过把关键码值映射到表中一个位 置来 访问记录,以加快查找的速度。这个映射函数叫做 散列函数,存放记录的 数组叫做 散列表。 给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数 f(key)为哈希(Hash) 函数。
常用方法
散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数, 数据元素将被更快地定位。 实际工作中需视不同的情况采用不同的 哈希函数,通常考虑的因素有: · 计算 哈希函数所需时间 · 关键字的长度 · 哈希表的大小 · 关键字的分布情况 · 记录的查找频率 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种 散列函数叫做自身函数)。若其中H(key)中已经有值了,就往下一个找,直到H(key)中没有值了,就放进去。 2. 数字分析法:分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。 3. 平方取中法:当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址。 [2] 例:我们把英文字母在字母表中的位置序号作为该英文字母的内部编码。例如K的内部编码为11,E的内部编码为05,Y的内部编码为25,A的内部编码为01, B的内部编码为02。由此组成关键字“KEYA”的内部代码为11052501,同理我们可以得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第7到第9位作为该关键字哈希地址,如下图所示关键字 | 内部编码 | 内部编码的平方值 | H(k)关键字的哈希地址 |
KEYA | 11050201 | 122157778355001 | 778 |
KYAB | 11250102 | 126564795010404 | 795 |
AKEY | 01110525 | 001233265775625 | 265 |
BKEY | 02110525 | 004454315775625 | 315 |
处理冲突编辑
1. 开放寻址法:Hi=(H(key) + di) MOD m,i=1,2,…,k(k<=m-1),其中H(key)为 散列函数,m为 散列表长,di为增量序列,可有下列三种取法: 1.1. di=1,2,3,…,m-1,称线性探测再散列; 1.2. di=1^2,-1^2,2^2,-2^2,⑶^2,…,±(k)^2,(k<=m/2)称二次探测再散列; 1.3. di= 伪随机数序列,称伪随机探测再散列。 2. 再 散列法:Hi=RHi(key),i=1,2,…,k RHi均是不同的 散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。 3. 链地址法(拉链法) 4. 建立一个公共溢出区查找性能编辑
散列表的查找过程基本上和造表过程相同。一些关键码可通过 散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对 散列表查找效率的量度,依然用平均查找长度来衡量。 查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素: 1. 散列函数是否均匀; 2. 处理冲突的方法; 3. 散列表的装填因子。 散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度 α是 散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。 实际上, 散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。 了解了hash基本定义,就不能不提到一些著名的hash算法,MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。那么他们都是什么意思呢?1. HashMap的数据结构
数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。
数组
数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;
链表
链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。
哈希表
那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。
哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:
从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。
HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。
首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。
/** * The table, resized as necessary. Length MUST Always be a power of two. */transient Entry[] table;
2. HashMap的存取实现
既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:
// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;
// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];
1)put
疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。
public V put(K key, V value) if (key == null) return putForNullKey(value); //null总是放在数组的第一个链表中 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); //遍历链表 for (Entry<K,V> e = table[i]; e != null; e = e.next) Object k; //如果key在链表中已存在,则替换为新value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; modCount++; addEntry(hash, key, value, i); return null;
void addEntry(int hash, K key, V value, int bucketIndex) Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next //如果size超过threshold,则扩充table大小。再散列 if (size++ >= threshold) resize(2 * table.length);
当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。
2)get
public V get(Object key) if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); //先定位到数组元素,再遍历该元素处的链表 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; return null;
3)null key的存取
null key总是存放在Entry[]数组的第一个元素。
private V putForNullKey(V value) for (Entry<K,V> e = table[0]; e != null; e = e.next) if (e.key == null) V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; modCount++; addEntry(0, null, value, 0); return null; private V getForNullKey() for (Entry<K,V> e = table[0]; e != null; e = e.next) if (e.key == null) return e.value; return null;4)确定数组index:hashcode % table.length取模
HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:
/** * Returns index for hash code h. */ static int indexFor(int h, int length) return h & (length-1); 按位取并,作用上相当于取模mod或者取余%。 这意味着数组下标相同,并不表示hashCode相同。5)table初始大小
public HashMap(int initialCapacity, float loadFactor) ..... // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init();注意table初始大小并不是构造函数中的initialCapacity!!
而是 >= initialCapacity的2的n次幂!!!!
————为什么这么设计呢?——
3. 解决hash冲突的办法
- 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
- 再哈希法
- 链地址法
- 建立一个公共溢出区
Java中hashmap的解决办法就是采用的链地址法。
4. 再散列rehash过程
当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) threshold = Integer.MAX_VALUE; return; Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor);
/** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) Entry<K,V> e = src[j]; if (e != null) src[j] = null; do Entry<K,V> next = e.next; //重新计算index int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; while (e != null);
以上是关于HashMap实现原理的主要内容,如果未能解决你的问题,请参考以下文章