C++ 实战之OpenCL环境搭建

Posted 哇小明

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++ 实战之OpenCL环境搭建相关的知识,希望对你有一定的参考价值。

前言:

接触opencl并行计算变成之前,在我的认知观中,所谓的并行应该就是应用多线程技术达到,比如openMP,openMPI等多线程技术。不过这些都是在cpu上运行,原理都是更好的利用多核处理器的硬件特性,让程序最大程度的利用了多核的优势。

接触opencl之后,认识到了opencl编程技术可以把一些复杂的代码搬运到GPU或其他加速处理器上运行,而gpu又比cpu更适应与计算比如加法,乘法等。第一感觉想到的就是opengl里面的shader,编写shader不就是把渲染相关的代码放在gpu上运行吗?其实,普通的算法代码也可以放在gpu上运行,而opencl就是实现这一技术的标准。

学习路径

花了一两周时间对opencl进行了一个多方面粗略的了解,opencl更加接近于硬件,所以有很多硬件相关的概念,比如平台结构,内存模型等,还涉及到各种指令操作,对于一开始准备学习opencl的软件开发人员来说比较生涩难懂,所以前阶段会跳过对这些硬件相关的概念的钻研,重心转移到如何用opencl标准接口编程和opencl的编程模型,软件架构等。

应用场景:

OpenCL的一个最大的优势,就是他的跨平台性,首先不同的操作系统mac,windows,android;其次不同的cpu,gpu也都支持。我目前在mac上进行opencl的开发学习,支持的版本是opencl1.2.也会在手机上进行测试,不同的硬件厂商他们都会自己实现相应的opencl库,而头文件都是标准的。

Mac上应用:

编程的IDE是mac自带的xcode,mac系统里面已经集成了opencl的sdk所以不需要去另外去下载了,只要在工程中把它加进来就可以进行opencl开发了,很方便。
下面时mac环境搭建过程,比较简单,另外目前mac最高支持opencl1.2。

点击+按钮,开始选择opencl库,直接搜索opencl就会出现,如下:

添加之后,工程项目就会多一个opencl的framework :


opencl开发有这几个标准的接口流程:

1.获取平台信息:
clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);

2.创建上下文:
clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
NULL, NULL, &errNum);

3.获取设备缓冲区大小
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);

4.为设备分配缓存
clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);

5.选取可用的设备中的一个:
clCreateCommandQueue(context, devices[0], 0, NULL);

6.创建kernel对象和编译源代码
program = clCreateProgramWithSource(context, 1,
(const char**)&srcStr,
NULL, NULL);

errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

7.最后释放opencl资源

下面是在mac上跑的例子:

//
//  main.cpp
//  OpenCL
//
//  Created by xxx on 2017/9/19.
//  Copyright © 2017年 xxx. All rights reserved.
//


#include <OpenCL/OpenCL.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <unistd.h>
#include <sys/time.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include <mach/mach_time.h>





const int ARRAY_SIZE = 100000;

//一、 选择OpenCL平台并创建一个上下文
cl_context CreateContext()

    cl_int errNum;
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;
    cl_context context = NULL;

    //选择可用的平台中的第一个
    errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
    if (errNum != CL_SUCCESS || numPlatforms <= 0)
    
        std::cerr << "Failed to find any OpenCL platforms." << std::endl;
        return NULL;
    

    //创建一个OpenCL上下文环境
    cl_context_properties contextProperties[] =
    
        CL_CONTEXT_PLATFORM,
        (cl_context_properties)firstPlatformId,
        0
    ;
    context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
                                      NULL, NULL, &errNum);

    return context;



//二、 创建设备并创建命令队列
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)

    cl_int errNum;
    cl_device_id *devices;
    cl_command_queue commandQueue = NULL;
    size_t deviceBufferSize = -1;

    // 获取设备缓冲区大小
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);

    if (deviceBufferSize <= 0)
    
        std::cerr << "No devices available.";
        return NULL;
    

    // 为设备分配缓存空间
    devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);

    //选取可用设备中的第一个
    commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);

    *device = devices[0];
    delete[] devices;
    return commandQueue;



// 三、创建和构建程序对象
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)

    cl_int errNum;
    cl_program program;

    std::ifstream kernelFile(fileName, std::ios::in);
    if (!kernelFile.is_open())
    
        std::cerr << "Failed to open file for reading: " << fileName << std::endl;
        return NULL;
    

    std::ostringstream oss;
    oss << kernelFile.rdbuf();

    std::string srcStdStr = oss.str();
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

    return program;


//创建和构建程序对象
bool CreateMemObjects(cl_context context, cl_mem memObjects[3],
                      float *a, float *b)

    memObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, a, NULL);
    memObjects[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, b, NULL);
    memObjects[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                   sizeof(float) * ARRAY_SIZE, NULL, NULL);
    return true;



// 释放OpenCL资源
void Cleanup(cl_context context, cl_command_queue commandQueue,
             cl_program program, cl_kernel kernel, cl_mem memObjects[3])

    for (int i = 0; i < 3; i++)
    
        if (memObjects[i] != 0)
            clReleaseMemObject(memObjects[i]);
    
    if (commandQueue != 0)
        clReleaseCommandQueue(commandQueue);

    if (kernel != 0)
        clReleaseKernel(kernel);

    if (program != 0)
        clReleaseProgram(program);

    if (context != 0)
        clReleaseContext(context);



int main(int argc, char** argv)




    cl_context context = 0;
    cl_command_queue commandQueue = 0;
    cl_program program = 0;
    cl_device_id device = 0;
    cl_kernel kernel = 0;
    cl_mem memObjects[3] =  0, 0, 0 ;
    cl_int errNum;
   // uint64_t t1,t2,t3;
    clock_t t1,t2,t3;


    const char* filename = "/Users/xxxxx/Projects/OpenCL/OpenCL/HelloWorld.cl";
    // 一、选择OpenCL平台并创建一个上下文
    context = CreateContext();

    // 二、 创建设备并创建命令队列
    commandQueue = CreateCommandQueue(context, &device);

    //创建和构建程序对象
    program = CreateProgram(context, device, filename);//"HelloWorld.cl");

    // 四、 创建OpenCL内核并分配内存空间
    kernel = clCreateKernel(program, "hello_kernel", NULL);

    //创建要处理的数据
    float result[ARRAY_SIZE];
    float a[ARRAY_SIZE];
    float b[ARRAY_SIZE];
    for (int i = 0; i < ARRAY_SIZE; i++)
    
        a[i] = (float)i;
        b[i] = (float)(ARRAY_SIZE - i);
    

    t1 = clock();  //mach_absolute_time();
    printf("t1 = %.8f\\n",(double)t1);
    for(int j = 0;j <  ARRAY_SIZE;j++)
        result[j] = a[j]+b[j];

    

    t2 = clock(); //mach_absolute_time();
    printf("t2 = %.8f\\n",(double)t2);

    //创建内存对象
    if (!CreateMemObjects(context, memObjects, a, b))
    
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    

    // 五、 设置内核数据并执行内核
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &memObjects[2]);

    size_t globalWorkSize[1] =  ARRAY_SIZE ;
    size_t localWorkSize[1] =  1 ;

    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL,
                                    globalWorkSize, localWorkSize,
                                    0, NULL, NULL);

    // 六、 读取执行结果并释放OpenCL资源
    errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], CL_TRUE,
                                 0, ARRAY_SIZE * sizeof(float), result,
                                 0, NULL, NULL);

    t3 = clock();  //mach_absolute_time();




    printf("cpu t = %.8f\\n",(float)(t2-t1)/CLOCKS_PER_SEC);
    printf("gpu t = %.8f \\n",(double)(t3-t2)/CLOCKS_PER_SEC);
    //std::cout<<"the noemal delta is = "<< CPU<<std::endl;
   // std::cout<<"the opencl delta is = "<<(t3-t2)/CLOCKS_PER_SEC<<std::endl;
//    for (int i = 0; i < ARRAY_SIZE; i++)
//    
//        std::cout << result[i] << " ";
//    
    std::cout << std::endl;
    std::cout << "Executed program succesfully." << std::endl;
    getchar();
    Cleanup(context, commandQueue, program, kernel, memObjects);

    return 0;

下面是kernel 源文件:


__kernel void hello_kernel(__global const float *a,
                           __global const float *b,
                           __global float *result)

    int gid = get_global_id(0);

    result[gid] = a[gid] + b[gid];


下面是在macbook pro 上的运行结果:

t1 = 143206.00000000
t2 = 143562.00000000
cpu t = 0.00035600
gpu t = 0.00155900 

Executed program succesfully.

看这个结果是cpu耗时更短,这个在情理之中,随着维数和计算量增大,gpu的优势才会体现,后面会逐步证明。

github地址:https://github.com/myhouselove/mac-opencl

Android 手机上的应用

我用android studio 2.2以上的版本搭建的ndk & cmake native工程开发学习opencl:
下面是搭建过程:
1.按照网上所说新建一个cmake的android工程,具体可以百度一下,这里是我的另外一篇博客的介绍:http://blog.csdn.net/w401229755/article/details/75810028

然后最重要的部分就是找到具体手机的opencl sdk和标准的头文件。我用的小米4 ,他的sdk就在/system/vendor/lib/libOpenCL.so下。我把他pull出来放在android工程中使用。

配置cmakelist.txt

# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html

# Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.4.1)

# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.


set(CMAKE_VERBOSE_MAKEFILE on)
set(libs "$CMAKE_SOURCE_DIR/src/main/jniLibs")
include_directories($CMAKE_SOURCE_DIR/src/main/cpp/include)

#--------------------------------------------------- import ---------------------------------------------------#
add_library(libOpenCL SHARED IMPORTED )
set_target_properties(libOpenCL PROPERTIES
    IMPORTED_LOCATION "$libs/$ANDROID_ABI/libOpenCL.so")


add_library( # Sets the name of the library.
             native-lib

             # Sets the library as a shared library.
             SHARED

             # Provides a relative path to your source file(s).
             src/main/cpp/native-lib.cpp )

# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.

find_library( # Sets the name of the path variable.
              log-lib

              # Specifies the name of the NDK library that
              # you want CMake to locate.
              log )

# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.

target_link_libraries( # Specifies the target library.
                       native-lib libOpenCL

                       # Links the target library to the log library
                       # included in the NDK.
                       $log-lib )

下面是c++的源代码:

#include <jni.h>
#include <stdlib.h>
#include <string>
#include <opencl.h>
#include <android/log.h>

#include <iostream>
#include <fstream>
#include <sstream>
#include <unistd.h>
#include <sys/time.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>


#define TAG OpenCL
#define LOGD(...)  __android_log_print(ANDROID_LOG_DEBUG,"OPENCL",__VA_ARGS__)

const int ARRAY_SIZE = 100000;

//一、 选择OpenCL平台并创建一个上下文
cl_context CreateContext()

    cl_int errNum;
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;
    cl_context context = NULL;

    //选择可用的平台中的第一个
    errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
    if (errNum != CL_SUCCESS || numPlatforms <= 0)
    
        std::cerr << "Failed to find any OpenCL platforms." << std::endl;
        return NULL;
    

    //创建一个OpenCL上下文环境
    cl_context_properties contextProperties[] =
            
                    CL_CONTEXT_PLATFORM,
                    (cl_context_properties)firstPlatformId,
                    0
            ;
    context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
                                      NULL, NULL, &errNum);

    return context;



//二、 创建设备并创建命令队列
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)

    cl_int errNum;
    cl_device_id *devices;
    cl_command_queue commandQueue = NULL;
    size_t deviceBufferSize = -1;

    // 获取设备缓冲区大小
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);

    if (deviceBufferSize <= 0)
    
        std::cerr << "No devices available.";
        return NULL;
    

    // 为设备分配缓存空间
    devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);

    //选取可用设备中的第一个
    commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);

    *device = devices[0];
    delete[] devices;
    return commandQueue;



// 三、创建和构建程序对象
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)

    cl_int errNum;
    cl_program program;

    std::ifstream kernelFile(fileName, std::ios::in);
    if (!kernelFile.is_open())
    
        LOGD("Failed to open file for reading: %s\\n" , fileName );
        return NULL;
    

    std::ostringstream oss;
    oss << kernelFile.rdbuf();

    std::string srcStdStr = oss.str();
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

    return program;


//创建和构建程序对象
bool CreateMemObjects(cl_context context, cl_mem memObjects[3],
                      float *a, float *b)

    memObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, a, NULL);
    memObjects[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, b, NULL);
    memObjects[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                   sizeof(float) * ARRAY_SIZE, NULL, NULL);
    return true;



// 释放OpenCL资源
void Cleanup(cl_context context, cl_command_queue commandQueue,
             cl_program program, cl_kernel kernel, cl_mem memObjects[3])

    for (int i = 0; i < 3; i++)
    
        if (memObjects[i] != 0)
            clReleaseMemObject(memObjects[i]);
    
    if (commandQueue != 0)
        clReleaseCommandQueue(commandQueue);

    if (kernel != 0)
        clReleaseKernel(kernel);

    if (program != 0)
        clReleaseProgram(program);

    if (context != 0)
        clReleaseContext(context);



int test()




    cl_context context = 0;
    cl_command_queue commandQueue = 0;
    cl_program program = 0;
    cl_device_id device = 0;
    cl_kernel kernel = 0;
    cl_mem memObjects[3] =  0, 0, 0 ;
    cl_int errNum;
    // uint64_t t1,t2,t3;
    clock_t t1,t2,t3;


    const char* filename = "HelloWorld.cl";
    // 一、选择OpenCL平台并创建一个上下文
    context = CreateContext();

    // 二、 创建设备并创建命令队列
    commandQueue = CreateCommandQueue(context, &device);

    //创建和构建程序对象
    program = CreateProgram(context, device, filename);//"HelloWorld.cl");

    // 四、 创建OpenCL内核并分配内存空间
    kernel = clCreateKernel(program, "hello_kernel", NULL);

    //创建要处理的数据
    float result[ARRAY_SIZE];
    float a[ARRAY_SIZE];
    float b[ARRAY_SIZE];
    for (int i = 0; i < ARRAY_SIZE; i++)
    
        a[i] = (float)i;
        b[i] = (float)(ARRAY_SIZE - i);
    

    t1 = clock();  //mach_absolute_time();
    LOGD("t1 = %.8f\\n",(double)t1);
    for(int j = 0;j <  ARRAY_SIZE;j++)
        result[j] = a[j]+b[j];

    

    t2 = clock(); //mach_absolute_time();
    LOGD("t2 = %.8f\\n",(double)t2);

    //创建内存对象
    if (!CreateMemObjects(context, memObjects, a, b))
    
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    

    // 五、 设置内核数据并执行内核
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &memObjects[2]);

    size_t globalWorkSize[1] =  ARRAY_SIZE ;
    size_t localWorkSize[1] =  1 ;

    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL,
                                    globalWorkSize, localWorkSize,
                                    0, NULL, NULL);

    // 六、 读取执行结果并释放OpenCL资源
    errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], CL_TRUE,
                                 0, ARRAY_SIZE * sizeof(float), result,
                                 0, NULL, NULL);

    t3 = clock();  //mach_absolute_time();




    LOGD("cpu t = %.8f\\n",(float)(t2-t1)/CLOCKS_PER_SEC);
    LOGD("gpu t = %.8f \\n",(double)(t3-t2)/CLOCKS_PER_SEC);


    LOGD("Executed program succesfully.");
    getchar();
    Cleanup(context, commandQueue, program, kernel, memObjects);

    return 0;



extern "C"
JNIEXPORT jstring JNICALL
Java_com_example_wangmingyong_opencl_MainActivity_stringFromJNI(
        JNIEnv *env,
        jobject /* this */) 

    test();

    std::string hello = "Hello from C++";
    return env->NewStringUTF(hello.c_str());

记得添加cl文件,这边cl文件跟上面mac中的cl一样。

具体代码可以看一下github 地址:https://github.com/myhouselove/OpenCL-android

总结

上面分别是opencl在mac和android上面的初步简单应用,属于很简单的开发环境入门,证明opencl的跨平台性还是很强的,同样的代码基本不要做什么修改,后续会结合opencv的一些矩阵算法,具体学习分析一下opencl的编程和性能方面的知识点。

以上是关于C++ 实战之OpenCL环境搭建的主要内容,如果未能解决你的问题,请参考以下文章

C++实战之OpenCL矩阵相乘优化

C++实战之OpenCL矩阵相乘

《Web安全攻防》配套视频之XSS实验平台搭建

elasticsearch实战三部曲之三:搜索操作

负载均衡环境搭建实战之apache和tomcat

Docker-compose实战之搭建LAMP环境