MapReduce常用计算模型详解

Posted Jan丶X

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce常用计算模型详解相关的知识,希望对你有一定的参考价值。

前一阵子参加炼数成金的MapReduce培训,培训中的作业例子比较有代表性,用于解释问题再好不过了。有一本国外的有关MR的教材,比较实用,点此下载

一.MapReduce应用场景

MR能解决什么问题?一般来说,用的最多的应该是日志分析,海量数据排序处理。最近一段时间公司用MR来解决大量日志的离线并行分析问题。

二.MapReduce机制

对于不熟悉MR工作原理的同学,推荐大家先去看一篇博文: http://blog.csdn.net/athenaer/article/details/8203990

三.常用计算模型

这里举一个例子,数据表在Oracle默认用户Scott下有DEPT表和EMP表。为方便,现在直接写成两个TXT文件如下:

1.部门表

DEPTNO,DNAME,LOC    // 部门号,部门名称,所在地

10,ACCOUNTING,NEW YORK
20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON

2.员工表

EMPNO,ENAME,JOB,HIREDATE,SAL,COMM,DEPTNO,MGR // 员工号,英文名,职位,聘期,工资,奖金,所属部门,管理者
7369,SMITH,CLERK,1980-12-17 00:00:00.0,800,,20,7902
7499,ALLEN,SALESMAN,1981-02-20 00:00:00.0,1600,300,30,7698
7521,WARD,SALESMAN,1981-02-22 00:00:00.0,1250,500,30,7698
7566,JONES,MANAGER,1981-04-02 00:00:00.0,2975,,20,7839
7654,MARTIN,SALESMAN,1981-09-28 00:00:00.0,1250,1400,30,7698
7698,BLAKE,MANAGER,1981-05-01 00:00:00.0,2850,,30,7839
7782,CLARK,MANAGER,1981-06-09 00:00:00.0,2450,    ,10,7839
7839,KING,PRESIDENT,1981-11-17 00:00:00.0,5000,,10,
7844,TURNER,SALESMAN,1981-09-08 00:00:00.0,1500,0,30,7698
7900,JAMES,CLERK,1981-12-03 00:00:00.0,950,,30,7698
7902,FORD,ANALYST,1981-12-03 00:00:00.0,3000,,20,7566
7934,MILLER,CLERK,1982-01-23 00:00:00.0,1300,,10,7782

3.实例化为bean

这两个bean的实际作用都是分割传入的字符串,从字符串内得到所属的属性信息。
emp.java
public Emp(String inStr) 
		String[] split = inStr.split(",");
		this.empno = (split[0].isEmpty()? "" : split[0]);
		this.ename = (split[1].isEmpty() ? "" : split[1]);
		this.job = (split[2].isEmpty() ? "" : split[2]);
		this.hiredate = (split[3].isEmpty() ? "" : split[3]);
		this.sal = (split[4].isEmpty() ? "0" : split[4]);
		this.comm = (split[5].isEmpty() ? "" : split[5]);
		this.deptno = (split[6].isEmpty() ? "" : split[6]);
		try 
			this.mgr = (split[7].isEmpty() ? "" : split[7]);
		 catch (IndexOutOfBoundsException e)      //防止最后一位为空的情况
			this.mgr = "";
		


dept.java
public Dept(String string) 
		String[] split = string.split(",");
		this.deptno = split[0];
		this.dname = split[1];
		this.loc = split[2];
	

4.模型分析

4.1 求和

求各个部门的总工资
public static class Map_1 extends MapReduceBase implements Mapper<Object, Text, Text, IntWritable> 
		public void map(Object key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
 				output.collect(new Text(emp.getDeptno()), new IntWritable(Integer.parseInt(emp.getSal())));  //  k=部门号,v=员工薪资
			 catch (Exception e) 
			reporter.getCounter(ErrCount.LINESKIP).increment(1);
			WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			
			 
	

	public static class Reduce_1 extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> 
		public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException 
			int sum = 0;
			while (values.hasNext()) 
				sum = sum + values.next().get();
			
			output.collect(key, new IntWritable(sum));
		

	


运行结果:


4.3 平均值

求各个部门的人数和平均工资
public static class Map_2 extends MapReduceBase implements Mapper<Object, Text, Text, IntWritable> 
		public void map(Object key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
				output.collect(new Text(emp.getDeptno()), new IntWritable(Integer.parseInt(emp.getSal())));  // k=部门号,v=薪资
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			

		
	

	public static class Reduce_2 extends MapReduceBase implements Reducer<Text, IntWritable, Text, Text> 
		public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			double sum = 0; //部门工资
			int count =0 ; //人数
			while (values.hasNext()) 
				count++;
				sum = sum + values.next().get();
			
			output.collect(key, new Text( count+" "+sum/count));
		

	


运行结果

4.4 分组排序

求每个部门最早进入公司的员工姓名
	public static class Map_3 extends MapReduceBase implements Mapper<Object, Text, Text, Text> 
		public void map(Object key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
				output.collect(new Text(emp.getDeptno()), new Text(emp.getHiredate() + "~" + emp.getEname())); //  k=部门号,v=聘期
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			

		
	

	public static class Reduce_3 extends MapReduceBase implements Reducer<Text, Text, Text, Text> 
		public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			DateFormat sdf = DateFormat.getDateInstance();
			Date minDate = new Date(9999, 12, 30);
			Date d;
			String[] strings = null;
			while (values.hasNext()) 
				try 
					strings = values.next().toString().split("~"); // 获取名字和日期
					d = sdf.parse(strings[0].toString().substring(0, 10));
					if (d.before(minDate)) 
						minDate = d;
					
				 catch (ParseException e) 
					e.printStackTrace();
				
			
			output.collect(key, new Text(minDate.toLocaleString() + " " + strings[1]));

		

	


运行结果

4.5 多表关联

求各个城市的员工的总工资
public static class Map_4 extends MapReduceBase implements Mapper<Object, Text, Text, Text> 
		public void map(Object key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			try 
				String fileName = ((FileSplit) reporter.getInputSplit()).getPath().getName();
				if (fileName.equalsIgnoreCase("emp.txt")) 
					Emp emp = new Emp(value.toString());
					output.collect(new Text(emp.getDeptno()), new Text("A#" + emp.getSal()));
				
				if (fileName.equalsIgnoreCase("dept.txt")) 
					Dept dept = new Dept(value.toString());
					output.collect(new Text(dept.getDeptno()), new Text("B#" + dept.getLoc()));
				
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			

		
	

	public static class Reduce_4 extends MapReduceBase implements Reducer<Text, Text, Text, Text> 
		public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			String deptV;
			Vector<String> empList = new Vector<String>(); // 保存EMP表的工资数据
			Vector<String> deptList = new Vector<String>(); // 保存DEPT表的位置数据
			while (values.hasNext()) 
				deptV = values.next().toString();
				if (deptV.startsWith("A#")) 
					empList.add(deptV.substring(2));
				
				if (deptV.startsWith("B#")) 
					deptList.add(deptV.substring(2));
				
			
			double sumSal = 0;
			for (String location : deptList) 
				for (String salary : empList) 
					//每个城市员工工资总和
					sumSal = Integer.parseInt(salary) + sumSal;
				
				output.collect(new Text(location), new Text(Double.toString(sumSal)));
			
		

	


运行结果

4.6 单表关联

工资比上司高的员工姓名及其工资
public static class Map_5 extends MapReduceBase implements Mapper<Object, Text, Text, Text> 
		public void map(Object key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
				output.collect(new Text(emp.getMgr()), new Text("A#" + emp.getEname() + "~" + emp.getSal()));  // 员工表  k=上司名,v=员工工资
				output.collect(new Text(emp.getEmpno()), new Text("B#" + emp.getEname() + "~" + emp.getSal()));// “经理表”  k=员工名,v=员工工资
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			
		
	

	public static class Reduce_5 extends MapReduceBase implements Reducer<Text, Text, Text, Text> 
		public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			String value;
			Vector<String> empList = new Vector<String>(); // 员工表
			Vector<String> mgrList = new Vector<String>(); // 经理表
			while (values.hasNext()) 
				value = values.next().toString();
				if (value.startsWith("A#")) 
					empList.add(value.substring(2));
				
				if (value.startsWith("B#")) 
					mgrList.add(value.substring(2));
				
			
			String empName, empSal, mgrSal;

			for (String emploee : empList) 
				for (String mgr : mgrList) 
					String[] empInfo = emploee.split("~");
					empName = empInfo[0];
					empSal = empInfo[1];
					String[] mgrInfo = mgr.split("~");
					mgrSal = mgrInfo[1];
					if (Integer.parseInt(empSal) > Integer.parseInt(mgrSal)) 
						output.collect(key, new Text(empName + " " + empSal));
					
				
			
		

	

运行结果

4.7 TOP N

列出工资最高的头三名员工姓名及其工资
public static class Map_8 extends MapReduceBase implements Mapper<Object, Text, Text, Text> 
		public void map(Object key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
				output.collect(new Text("1"), new Text(emp.getEname() + "~" + emp.getSal()));    //  k=随意字符串或数字,v=员工名字+薪资
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			

		
	

	public static class Reduce_8 extends MapReduceBase implements Reducer<Text, Text, Text, Text> 
		public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			Map<Integer, String> emp = new TreeMap<Integer, String>();   // TreeMap默认key升序排列,巧妙利用这点可以实现top N
			while (values.hasNext()) 
				String[] valStrings = values.next().toString().split("~");
				emp.put(Integer.parseInt(valStrings[1]), valStrings[0]);
			
			int count = 0; // 计数器
			for (Iterator<Integer> keySet = emp.keySet().iterator(); keySet.hasNext();) 
				if (count < 3)   //  N =3
					Integer current_key = keySet.next();
					output.collect(new Text(emp.get(current_key)), new Text(current_key.toString())); // 迭代key,即SAL
					count++;
				 else 
					break;
				
			
		
	

运算结果

4.8 降序排序

将全体员工按照总收入(工资+提成)从高到低排列,要求列出姓名及其总收入
public static class Map_9 extends MapReduceBase implements Mapper<Object, Text, Text, Text> 
		public void map(Object key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			try 
				Emp emp = new Emp(value.toString());
				int totalSal = Integer.parseInt(emp.getComm()) + Integer.parseInt(emp.getSal());
				output.collect(new Text("1"), new Text(emp.getEname() + "~" + totalSal));
			 catch (Exception e) 
				reporter.getCounter(ErrCount.LINESKIP).increment(1);
				WriteErrLine.write("./input/" + this.getClass().getSimpleName() + "err_lines", reporter.getCounter(ErrCount.LINESKIP).getCounter() + " " + value.toString());
			

		
	

	public static class Reduce_9 extends MapReduceBase implements Reducer<Text, Text, Text, Text> 
		public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException 
			Map<Integer, String> emp = new TreeMap<Integer, String>(
			// 重写比较器,使降序排列
					new Comparator<Integer>() 
						public int compare(Integer o1, Integer o2) 
							return o2.compareTo(o1);
						
					);
			while (values.hasNext()) 
				String[] valStrings = values.next().toString().split("~");
				emp.put(Integer.parseInt(valStrings[1]), valStrings[0]);
			
			for (Iterator<Integer> keySet = emp.keySet().iterator(); keySet.hasNext();) 
				Integer current_key = keySet.next();
				output.collect(new Text(emp.get(current_key)), new Text(current_key.toString())); // 迭代key,即SAL
			
		
	

运行结果

四.总结

把sql里常用的计算模型写成MR是一件比较麻烦的事,因为很多情况下一行sql估计要十几甚至几十行代码来实现,略显笨拙。但是从数据计算速度来说,MR跟sql不是一个级别的。 但不可否认的一点是,无论是什么技术都有各自的适用范围,MR不是万能的,具体要看使用场景再选择适当的技术。

以上是关于MapReduce常用计算模型详解的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop详解——MapReduce原理和执行过程,远程Debug,Writable序列化接口,MapReduce程序编写

MapReduce和spark的shuffle过程详解

重新解读 MapReduce

MapReduce编程模型详解(基于Windows平台Eclipse)

MapReduce计算模型二

大数据技术专题篇MapReduce shuffle过程详解