大数定律与中心极限定理

Posted Xurtle

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数定律与中心极限定理相关的知识,希望对你有一定的参考价值。

学习目标: Be able to use the central limit theorem to approximate probabilities of averages and sums of independent identically-distributed random variables.

Sample Mean

Suppose X1,X2,,Xn are independent random variables with the same underlying distribution. In this case, we say that the Xi are independent and identically-distributed, or i.i.d. In particular, the Xi all have the same mean μ and standard deviation σ . Sample Mean 定义如下:

X¯n=X1+X2++Xnn=1ni=1nXi

为了更好地理解 sample mean,下面我来举例说明一下。现在让我们进行投硬币实验,如果我们投的次数越多,出现正反面的次数会接近相同,这不难理解。在这个实验中,每个随机变量 Xi 就是一次独立的投掷,因此 XiBernoulli(0.5) ,如果我们一共投掷100次,那么n=100, sample mean X¯100 = (在100次的投掷中,出现正面的概率)。

Randomness being what it is, this is not guaranteed; for example we could get 100 heads in 100 flips, though the probability of this occurring is very small. So our intuition translates to: with high probability the sample mean X¯n is close to the mean 0.5 for large n.

由于 Xi 本身就是随机变量,因此 X¯n 也是随机变量,那么它的分布是怎样的呢?下文中介绍的中心极限定理会告诉我们:随着 n 逐渐增大时, X¯n 最终会收敛到正态分布。

The law of large numbers

大数定律告诉我们:The average of many independent samples is (with high probability) close to the mean of the underlying distribution. 举个例子说明一下大数定律所表达的含义。如下图所示,当我们投掷一个骰子的次数超过400次时,我们观察到的 sample mean 会非常接近于理论上的期望值(期望不是随机变量,而是一个确定的值)。因此,大数定律告诉我们:当实验的数目足够大时,sample mean 会等于真正的 mean.

接下来,我给出大数定律准确的数学定义

Suppose X1,X2,,Xn, are i.i.d. random variables with mean μ and variance σ2 . For each n, let X¯n be the average of the first n variables. Then for any ϵ > 0, we have

limnP(|X¯nμ|<ϵ)=1
Think of ϵ as a small tolerance of error from the true mean μ .

在证明大数定律之前,我们需要先了解一下 Markov inequalities, Chebyshev inequalities, and convergence in probability.

Markov inequalities

Markov 不等式把概率与期望关联起来,定义如下:

If X is a nonnegative random variable and a>0 , then the probability that X is no less than a is no greater than the expectation of X divided by a: P(Xa)E[X]a

关于这个不等式的证明参考 Lecture 19 中的 5:40 处开始。

Chebyshev inequalities

切比雪夫不等式定义:Let X (integrable) be a random variable with finite expected value μ and finite non-zero variance σ2 :

P(|Xμ|c)σ2c2

c=kσ ,对于任何实数 大数定律与中心极限定理

[概率论与数理统计]笔记:3.5 大数定律与中心极限定理

统计和数学中常见的定理汇总 | 大数定律 | 中心极限定理

概率论之大数定理与中心极限定理

大数定律和中心极限定律

中心极限定理 | central limit theorem | 大数定律 | law of large numbers