什么是哈希算法
Posted Flytiger1220
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是哈希算法相关的知识,希望对你有一定的参考价值。
散列表
散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数 ,存放记录的数组称做散列表。
散列函数
散列函数,顾名思义,它是一个函数。如果把它定义成 hash(key) ,其中 key 表示元素的键值,则 hash(key) 的值表示经过散列函数计算得到的散列值。
散列函数的特点:
1.确定性
如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。
2.散列碰撞(collision)
散列函数的输入和输出不是唯一对应关系的,如果两个散列值相同,两个输入值很可能是相同的,但也可能不同。
3.不可逆性
一个哈希值 对应无数个明文,理论上你并不知道哪个是。
“船长,如果一样东西你知道在哪里,还算不算丢了。”
“不算。”
“好的,那您的酒壶没有丢。”
4.混淆特性
输入一些数据计算出散列值,然后部分改变输入值,一个具有强混淆特性的散列函数会产生一个完全不同的散列值。
常见的散列函数
1. MD5
MD5 即 Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一,主流编程语言普遍已有 MD5 实现。
将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5 的前身有 MD2 、MD3 和 MD4 。
MD5 是输入不定长度信息,输出固定长度 128-bits 的算法。经过程序流程,生成四个32位数据,最后联合起来成为一个 128-bits 散列。
基本方式为,求余、取余 、调整长度、与链接变量进行循环运算,得出结果。
MD5 计算广泛应用于错误检查。在一些 BitTorrent 下载中,软件通过计算 MD5 来检验下载到的碎片的完整性。
2. SHA-1
SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。
SHA-1 曾经在许多安全协议中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5的后继者。
散列冲突
理想中的一个散列函数,希望达到
如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)
这种效果,然而在真实的情况下,要想找到一个不同的 key 对应的散列值都不一样的散列函数,几乎是不可能的,即使是 MD5 或者 由美国国家安全局设计的 SHA-1 算法也无法实现。
事实上,再好的散列函数都无法避免散列冲突。
为什么呢?
这涉及到数学中比较好理解的一个原理:抽屉原理。
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
对于散列表而言,无论设置的存储区域(n)有多大,当需要存储的数据大于 n 时,那么必然会存在哈希值相同的情况。这就是所谓的散列冲突。
那应该如何解决散列冲突问题呢?
常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。
开放寻址法
定义:将散列函数扩展定义成探查序列,即每个关键字有一个探查序列h(k,0)、h(k,1)、…、h(k,m-1),这个探查序列一定是0….m-1的一个排列(一定要包含散列表全部的下标,不然可能会发生虽然散列表没满,但是元素不能插入的情况),如果给定一个关键字k,首先会看h(k,0)是否为空,如果为空,则插入;如果不为空,则看h(k,1)是否为空,以此类推。
开放寻址法是一种解决碰撞的方法,对于开放寻址冲突解决方法,比较经典的有线性探测方法(Linear Probing)、二次探测(Quadratic probing)和 双重散列(Double hashing)等方法。
线性探测方法
当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
以上图为例,散列表的大小为 8 ,黄色区域表示空闲位置,橙色区域表示已经存储了数据。目前散列表中已经存储了 4 个元素。此时元素 7777777 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。
于是按顺序地往后一个一个找,看有没有空闲的位置,此时,运气很好正巧在下一个位置就有空闲位置,将其插入,完成了数据存储。
线性探测法一个很大的弊端就是当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,需要从头到尾探测整个散列表,所以最坏情况下的时间复杂度为 O(n)。
二次探测方法
二次探测是二次方探测法的简称。顾名思义,使用二次探测进行探测的步长变成了原来的“二次方
”,也就是说,它探测的下标序列为 hash(key)+0
,hash(key)+1^2
或[hash(key)-1^2]
,hash(key)+2^2
或[hash(key)-2^2]
。
以上图为例,散列表的大小为 8 ,黄色区域表示空闲位置,橙色区域表示已经存储了数据。目前散列表中已经存储了 7 个元素。此时元素 7777777 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。
按照二次探测方法的操作,有冲突就先 + 1^2,8 这个位置有值,冲突;变为 - 1^2,6 这个位置有值,还是有冲突;于是 - 2^2, 3 这个位置是空闲的,插入。
双重散列方法
所谓双重散列,意思就是不仅要使用一个散列函数,而是使用一组散列函数 hash1(key)
,hash2(key)
,hash3(key)
。。。。。。先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。
以上图为例,散列表的大小为 8 ,黄色区域表示空闲位置,橙色区域表示已经存储了数据。目前散列表中已经存储了 7 个元素。此时元素 7777777 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。
此时,再将数据进行一次哈希算法处理,经过另外的 Hash 算法之后,被散列到位置下标为 3 的位置,完成操作。
事实上,不管采用哪种探测方法,只要当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,需要尽可能保证散列表中有一定比例的空闲槽位。
一般使用加载因子(load factor)来表示空位的多少。
加载因子是表示 Hsah 表中元素的填满的程度,若加载因子越大,则填满的元素越多,这样的好处是:空间利用率高了,但冲突的机会加大了。反之,加载因子越小,填满的元素越少,好处是冲突的机会减小了,但空间浪费多了。
链表法
链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。如下动图所示,在散列表中,每个位置对应一条链表,所有散列值相同的元素都放到相同位置对应的链表中。
以上是关于什么是哈希算法的主要内容,如果未能解决你的问题,请参考以下文章