CaffeCaffe版MobileNet实操
Posted Taily老段
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CaffeCaffe版MobileNet实操相关的知识,希望对你有一定的参考价值。
github代码:https://github.com/shicai/MobileNet-Caffe
有Mobilenet-V1,Mobilenet-V2的prototxt和caffemodel;
Evaluate MobileNet v1:
python eval_image.py --proto mobilenet_deploy.prototxt --model mobilenet.caffemodel --image ./cat.jpg
Expected Outputs:
0.42 - 'n02123159 tiger cat'
0.08 - 'n02119022 red fox, Vulpes vulpes'
0.07 - 'n02119789 kit fox, Vulpes macrotis'
0.06 - 'n02113023 Pembroke, Pembroke Welsh corgi'
0.06 - 'n02123045 tabby, tabby cat'
Evaluate MobileNet v2:
python eval_image.py --proto mobilenet_v2_deploy.prototxt --model mobilenet_v2.caffemodel --image ./cat.jpg
Expected Outputs:
0.26 - 'n02123159 tiger cat'
0.22 - 'n02124075 Egyptian cat'
0.15 - 'n02123045 tabby, tabby cat'
0.04 - 'n02119022 red fox, Vulpes vulpes'
0.02 - 'n02326432 hare'
Finetuning on your own data(在自己的数据集上进行微调)
Modify deploy.prototxt
and save it as your train.prototxt
as follows: Remove the first 5 input
/input_dim
lines, and add Image Data
layer in the beginning like this:
layer
name: "data"
type: "ImageData"
top: "data"
top: "label"
include
phase: TRAIN
transform_param
scale: 0.017
mirror: true
crop_size: 224
mean_value: [103.94, 116.78, 123.68]
image_data_param
source: "your_list_train_txt"
batch_size: 32 # your batch size
new_height: 256
new_width: 256
root_folder: "your_path_to_training_data_folder"
Remove the last prob
layer, and add Loss
and Accuracy
layers in the end like this:
layer
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc7"
bottom: "label"
top: "loss"
layer
name: "top1/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top1/acc"
include
phase: TEST
layer
name: "top5/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top5/acc"
include
phase: TEST
accuracy_param
top_k: 5
以上是关于CaffeCaffe版MobileNet实操的主要内容,如果未能解决你的问题,请参考以下文章