手撕STLunordered_setunordered_map(用哈希表封装)

Posted The August

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了手撕STLunordered_setunordered_map(用哈希表封装)相关的知识,希望对你有一定的参考价值。

哈希

unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到logN,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同

unordered_map

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。

unordered_map的接口说明

unordered_map在线文档说明
注意:

  • operator[]该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。
  • unordered_map中key是不能重复的,因此count函数的返回值最大为1

unordered_set

unordered_set在线文档说明

unordered系列关联式容器的使用

注:在功能上和map、set是一样的区别在于,这两个容器遍历出来不是有序的,他们是单向迭代器

void test_op()

	set<int> s;
	unordered_set<int> us;
	const int n = 100000000; //改变n的值
	vector<int> v;
	srand(time(0));
	for (size_t i = 0; i < n; ++i)
	
		v.push_back(rand());
	

	size_t begin1 = clock();
	for (auto e : v)
	
		s.insert(e);
	
	size_t end1 = clock();

	size_t begin2 = clock();
	for (auto e : v)
	
		us.insert(e);
	
	size_t end2 = clock();

	cout << "set insert:" << end1 - begin1 << endl;
	cout << "unordered_set insert:" << end2 - begin2 << endl;
	cout << "=====================" << endl;
	size_t begin3 = clock();
	for (auto e : v)
	
		s.find(e);
	
	size_t end3 = clock();

	size_t begin4 = clock();
	for (auto e : v)
	
		us.find(e);
	
	size_t end4 = clock();

	cout << "set find:" << end3 - begin3 << endl;
	cout << "unordered_set find:" << end4 - begin4 << endl;

	cout << "=====================" << endl;
	size_t begin5 = clock();
	for (auto e : v)
	
		s.erase(e);
	
	size_t end5 = clock();

	size_t begin6 = clock();
	for (auto e : v)
	
		us.erase(e);
	
	size_t end6 = clock();

	cout << "set erase:" << end5 - begin5 << endl;
	cout << "unordered_set erase:" << end6 - begin6 << endl;

运行结果:

注:unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

总结:

  • 当数据量小时,map/set容器与unordered_map/unordered_set容器增删查改的效率差异不大。
  • 当数据量大时,map/set容器与unordered_map/unordered_set容器增删查改的效率相比,unordered系列容器的效率更高。

注: 当存储的数据没有特定说明需要排序时,一定要用unordered系列的关联式容器;当需要存储的序列为有序时,应该选用ordered系列的关联式容器

底层结构

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( logn),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

哈希冲突

对于两个数据元素的关键字 ki和kj (i != j),有ki !=kj ,但有:Hash( ki) == Hash(kj ),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0 到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定制法
  • 取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
  • 优点:简单、均匀
  • 缺点:需要事先知道关键字的分布情况
  • 使用场景:适合查找比较小且连续的情况
  1. 除留余数法
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

  2. 平方取中法
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
    平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  3. 折叠法
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  4. 随机数法
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
    通常应用于关键字长度不等时采用此法

  5. 数学分析法
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。
    数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个”空位置中去。

线性探测

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入

  • 通过哈希函数获取待插入元素在哈希表中的位置

  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

删除:

  • 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索(会影响该方法的插入和删除)。线性探测采用标记的伪删除法来删除一个元素。

线性探测的实现:

namespace close_hash

	enum State
	
		EMPTY,
		DELETE,
		EXIST,
	;
	template<class K,class T>
	struct HashData
	
		pair<K, T> _hd;
		State _s = EMPTY;
	;
	template<class K>
	struct HashFun
	
		size_t operator()(const K& key)
		
			return key;
		
	;
	template<>
	struct HashFun<string>
	
		//BKDR Hash思想
		size_t operator()(const string& key)
		
			size_t n = 0;
			for (auto& e : key)
			
				n *= 131;
				n += e;
			
			return n;
		
	;
	template<class K,class T,class Hash=HashFun<K>>
	class HashTable
	
	public:
		HashData<K, T>* find(const pair<K, T>& kv)
		
			if (_ht.size() == 0)
				return nullptr;
			Hash hs;
			size_t begin = hs(kv.first) % _ht.size();
			size_t i = 0;
			while (_ht[begin]._s != EMPTY)
			
				if (_ht[begin]._hd == kv && _ht[begin]._s != DELETE)
					return &_ht[begin];
				else
				
					i++;
					begin += i;
					begin %= _ht.size();
				
			
			return nullptr;

		
		bool erase(const pair<K, T>& kv)
		
			HashData<K, T>* phd=find(kv);
			if (phd == nullptr)
				return false;
			else
			
				//伪删除法
				phd->_s = DELETE;
				_n--;
				return true;
			
		
		bool Insert(const pair<K, T>& kv)
		
			if (find(kv))
				return false;
			if (_ht.size() == 0 || _n * 10 / _ht.size() >= 7)
			
				size_t newsize = _ht.size() == 0 ? 10 : _ht.size() * 2;
				HashTable<K,T,Hash> nht;
				nht._ht.resize(newsize);
				for (const auto& e : _ht)
				
					if(e._s==EXIST)
						nht.Insert(e._hd);
				
				_ht.swap(nht._ht);
			
			Hash hs;
			size_t begin = hs(kv.first) % _ht.size();
			size_t i = 0;
			while (_ht[begin]._s == EXIST)
			
				i++;
				begin += i;
				begin %= _ht.size();
			
			_ht[begin]._hd = kv;
			_ht[begin]._s = EXIST;
			_n++;
			return true;
		

	private:
		vector<HashData<K, T>> _ht;
		size_t _n=0; //存储有效数据的个数
	;


注意:

  • 在删除一个元素时,需要每个位置存储值得同时在存储一个状态标记:空、满、删除
  • 哈希表在载荷因子超过0.7-0.8以上进行扩容

线性探测优点:实现非常简单
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:Hi = ( H0+i^2 )% m,或者:Hi = (H0 -i^2 )% m。其中:i = 1,2,3…,H0 是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

二次探测的实现:

namespace close_hash

	enum State
	
		EMPTY,
		DELETE,
		EXIST,
	;
	template<class K,class T>
	struct HashData
	
		pair<K, T> _hd;
		State _s = EMPTY;
	;
	template<class K>
	struct HashFun
	
		size_t operator()(const K& key)
		
			return key;
		
	;
	template<>
	struct HashFun<string>
	
		//BKDR Hash思想
		size_t operator()(const string& key)
		
			size_t n = 0;
			for (auto& e : key)
			
				n *= 131;
				n += e;
			
			return n;
		
	;
	template<class K,class T,class Hash=HashFun<K>>
	class HashTable
	
	public:
		HashData<K, T>* find(const pair<K, T>& kv)
		
			if (_ht.size() == 0)
				return nullptr;
			Hash hs;
			size_t begin = hs(kv.first) % _ht.size();
			size_t i = 0;
			while (_ht[begin]._s != EMPTY)
			
				if (_ht[begin]._hd == kv && _ht[begin]._s != DELETE)
					return &_ht[begin];
				else
				
					i++;
					i = i * i;
					begin += i;
					begin %= _ht.size();
				
			
			return nullptr;

		
		bool erase(const pair<K, T>& kv)
		
			HashData<K, T>* phd=find(kv);
			if (phd == nullptr)
				return false;
			else
			
				//伪删除法
				phd->_s = DELETE;
				_n--;
				return true;
			
		
		bool Insert(const pair<K, T>& kv)
		
			if (find(kv))
				return false;
			//if (_ht.size() == 0 || _n * 10 / _ht.size() >= 7)
			if (_ht.size() == 0 || _n * 10 / _ht.size() >= 5)
			
				size_t newsize = _ht.size() == 0 ? 10 : _ht.size() * 2;
				HashTable<K,T,Hash> nht;
				nht._ht.resize(newsize);
				for (const auto& e : _ht)
				
					if(e._s==EXIST)
						nht.Insert(e._hd);
				
				_ht.swap(nht._ht);
			
			Hash hs;
			size_t begin = hs(kv.first) % _ht.size();
			size_t i = 0;
			while (_ht[begin]._s == EXIST)
			
				i++;
				i = i * i;
				begin += i;
				begin %= _ht.size();
			
			_ht[begin]._hd = kv;
			_ht[begin]._s = EXIST;
			_n++;
			return true;
		

	private:
		vector<HashData<K, T>> _ht;
		size_t _n=0; //存储有效数据的个数
	;

	

相比线性探测的好处,如果一个位置有很多值映射,冲突剧烈,那么他们存储是相对会比较分散,不会引发一片一片的冲突

开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

开散列中每个桶中放的都是发生哈希冲突的元素

开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

补充:

  • 除留余数法,最好模一个素数(一个类似两倍关系的素数)
const int PRIMECOUNT = 28;
const size_t primeList[PRIMECOUNT] = 
 53ul, 97ul, 193ul, 389ul, 769ul,
 1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
 1610612741ul, 3221225473ul, 4294967291ul
;
size_t GetNextPrime(size_t prime) 
 size_t i = 0;
 for(; i < PRIMECOUNT; ++i)
 
 if(primeList[i] > primeList[i])
 return primeList[i];
 
 
 return primeList[i];

  • 哈希函数采用处理余数法,被模的key必须要为整形才可以处理,当key为字符串类型,用BKDRHash算法

字符串哈希算法

开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

补充:

  • 负载因子=数据个数/表的大小
  • 负载因子越低,冲突的概率越低,空间浪费越高
  • 负载因子越高,冲突的概率越高,空间浪费越低

开散列的代码实现

#pragma once
#include <vector>

template<class K>
struct HashFunc

	size_t operator()(const K& key)
	
		return key;
	
;

// 特化
template<以上是关于手撕STLunordered_setunordered_map(用哈希表封装)的主要内容,如果未能解决你的问题,请参考以下文章

手撕Java虚拟机

手撕面试题

算法手撕代码131~140

算法手撕代码91~100

java面试之手撕代码

算法手撕代码141~150