商城项目17_es的DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示
Posted 所得皆惊喜
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了商城项目17_es的DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示相关的知识,希望对你有一定的参考价值。
文章目录
- ①. DSL领域特定语言
- ②. match、match_phrase、multi_math查询
- ③. query→bool→must复合查询
- ④. 词条匹配 - term、terms查询
- ⑤. es - term和match的区别
- ⑥. aggregation执行聚合查询
- ⑦. 排序sort、查询范围range
- ⑧. 查询页码from、大小size
- ⑨. 高亮显示highlight
①. DSL领域特定语言
-
①. Elasticsearch提供了一个可以执行查询的Json风格的DSL(domain-specific language领域特定语言)。这个被称为Query DSL,该查询语言非常全面
-
②. 基本语法格式(一个查询语句的典型结构)
如果针对于某个字段,那么它的结构如下:
QUERY_NAME: # 使用的功能
FIELD_NAME: # 功能参数
ARGUMENT:VALUE,
ARGUMENT:VALUE,...
示例 使用时不要加#注释内容
GET bank/_search
"query": # 查询的字段
"match_all":
,
"from": 0, # 从第几条文档开始查
"size": 5,
"_source":["balance"],
"sort": [
"account_number": # 返回结果按哪个列排序
"order": "desc" # 降序
]
_source为要返回的字段
GET bank/_search
"query":
"match_all":
,
"from": 0,
"size": 5,
"sort": [
"account_number":
"order": "desc"
],
"_source": ["balance","firstname"]
"took" : 18, # 花了18ms
"timed_out" : false, # 没有超时
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 1000, # 命令1000条
"relation" : "eq"
,
"max_score" : null,
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "999", # 第一条数据id是999
"_score" : null, # 得分信息
"_source" :
"firstname" : "Dorothy",
"balance" : 6087
,
"sort" : [ # 排序字段的值
999
]
,
省略。。。
②. match、match_phrase、multi_math查询
- ①. match:如果是非字符串,会进行精确匹配
全文检索按照评分进行排序
基本类型(非字符串),精确控制
GET bank/_search
"query":
"match":
"account_number": "20"
match返回account_number=20的数据
查询结果:
"took" : 1,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 1, // 得到一条
"relation" : "eq"
,
"max_score" : 1.0, # 最大得分
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "20",
"_score" : 1.0,
"_source" : # 该条文档信息
"account_number" : 20,
"balance" : 16418,
"firstname" : "Elinor",
"lastname" : "Ratliff",
"age" : 36,
"gender" : "M",
"address" : "282 Kings Place",
"employer" : "Scentric",
"email" : "elinorratliff@scentric.com",
"city" : "Ribera",
"state" : "WA"
]
- ②. match:如果是字符串,会进行全文检索
字符串,全文检索
GET bank/_search
"query":
"match":
"address": "kings"
全文检索,最终会按照评分进行排序,会对检索条件进行分词匹配
"took" : 30,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 2,
"relation" : "eq"
,
"max_score" : 5.990829,
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "20",
"_score" : 5.990829,
"_source" :
"account_number" : 20,
"balance" : 16418,
"firstname" : "Elinor",
"lastname" : "Ratliff",
"age" : 36,
"gender" : "M",
"address" : "282 Kings Place",
"employer" : "Scentric",
"email" : "elinorratliff@scentric.com",
"city" : "Ribera",
"state" : "WA"
,
"_index" : "bank",
"_type" : "account",
"_id" : "722",
"_score" : 5.990829,
"_source" :
"account_number" : 722,
"balance" : 27256,
"firstname" : "Roberts",
"lastname" : "Beasley",
"age" : 34,
"gender" : "F",
"address" : "305 Kings Hwy",
"employer" : "Quintity",
"email" : "robertsbeasley@quintity.com",
"city" : "Hayden",
"state" : "PA"
]
- ③. match_phrase(不拆分匹配):将需要匹配的值当成一整个单词(不分词)进行检索(短语匹配)
- match_phrase:不拆分字符串进行检索
- 字段.keyword:必须全匹配上才检索成功(精确匹配)
# 前面的是包含mill或road就查出来,我们现在要都包含才查出
GET bank/_search
"query":
"match_phrase":
"address": "mill road" # 就是说不要匹配只有mill或只有road的,要匹配mill road一整个子串
# 查处address中包含mill road的所有记录,并给出相关性得分
"took" : 32,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 1,
"relation" : "eq"
,
"max_score" : 8.926605,
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "970",
"_score" : 8.926605,
"_source" :
"account_number" : 970,
"balance" : 19648,
"firstname" : "Forbes",
"lastname" : "Wallace",
"age" : 28,
"gender" : "M",
"address" : "990 Mill Road", # "mill road"
"employer" : "Pheast",
"email" : "forbeswallace@pheast.com",
"city" : "Lopezo",
"state" : "AK"
]
GET bank/_search
"query":
"match_phrase":
"address.keyword": "mill road"
"took" : 0,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 0,
"relation" : "eq"
,
"max_score" : null,
"hits" : [ ]
- ④. query/multi_match(多字段匹配)
state或者address中包含mill,并且在查询过程中,会对于查询条件。进行分词处理
GET bank/_search
"query":
"multi_match": # 前面的match仅指定了一个字段。
"query": "Mill",
"fields": [ # state和address有mill子串 不要求都有
"state",
"address"
]
查询结果:
"took" : 28,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 4,
"relation" : "eq"
,
"max_score" : 5.4032025,
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "970",
"_score" : 5.4032025,
"_source" :
"account_number" : 970,
"balance" : 19648,
"firstname" : "Forbes",
"lastname" : "Wallace",
"age" : 28,
"gender" : "M",
"address" : "990 Mill Road", # 有mill
"employer" : "Pheast",
"email" : "forbeswallace@pheast.com",
"city" : "Lopezo",
"state" : "AK" # 没有mill
,
"_index" : "bank",
"_type" : "account",
"_id" : "136",
"_score" : 5.4032025,
"_source" :
"account_number" : 136,
"balance" : 45801,
"firstname" : "Winnie",
"lastname" : "Holland",
"age" : 38,
"gender" : "M",
"address" : "198 Mill Lane", # mill
"employer" : "Neteria",
"email" : "winnieholland@neteria.com",
"city" : "Urie",
"state" : "IL" # 没有mill
,
"_index" : "bank",
"_type" : "account",
"_id" : "345",
"_score" : 5.4032025,
"_source" :
"account_number" : 345,
"balance" : 9812,
"firstname" : "Parker",
"lastname" : "Hines",
"age" : 38,
"gender" : "M",
"address" : "715 Mill Avenue", #
"employer" : "Baluba",
"email" : "parkerhines@baluba.com",
"city" : "Blackgum",
"state" : "KY" # 没有mill
,
"_index" : "bank",
"_type" : "account",
"_id" : "472",
"_score" : 5.4032025,
"_source" :
"account_number" : 472,
"balance" : 25571,
"firstname" : "Lee",
"lastname" : "Long",
"age" : 32,
"gender" : "F",
"address" : "288 Mill Street", #
"employer" : "Comverges",
"email" : "leelong@comverges.com",
"city" : "Movico",
"state" : "MT" # 没有mill
]
③. query→bool→must复合查询
-
①. 复合语句可以合并,任何其他查询语句,包括符合语句。这也就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑
-
②. must:必须达到must所列举的所有条件
实例:查询gender=m,并且address=mill的数据
GET bank/_search
"query":
"bool": #
"must":[ # 必须有这些字段
"match":"address":"mill",
"match":"gender":"M"
]
查询结果
"took" : 1,
"timed_out" : false,
"_shards" :
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
,
"hits" :
"total" :
"value" : 3,
"relation" : "eq"
,
"max_score" : 6.0824604,
"hits" : [
"_index" : "bank",
"_type" : "account",
"_id" : "970",
"_score" : 6.0824604,
"_source" :
"account_number" : 970,
"balan以上是关于商城项目17_es的DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示的主要内容,如果未能解决你的问题,请参考以下文章
ElasticSearch02_DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示
ElasticSearch02_DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示
ElasticSearch02_DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询
ElasticSearch02_DSL特定语言matchbooltermtermsaggsfromsizerangesort排序查询高亮显示