机器学习逻辑回归对肿瘤预测

Posted 赵广陆

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习逻辑回归对肿瘤预测相关的知识,希望对你有一定的参考价值。

目录


1 逻辑回归api介绍

  • sklearn.linear_model.LogisticRegression(solver=‘liblinear’, penalty=‘l2’, C = 1.0)
    • solver可选参数:‘liblinear’, ‘sag’, ‘saga’,‘newton-cg’, ‘lbfgs’,
      • 默认: ‘liblinear’;用于优化问题的算法。
      • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
      • 对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
    • penalty:正则化的种类
    • C:正则化力度

默认将类别数量少的当做正例

LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

2 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

2.1 背景介绍

  • 数据介绍

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/

数据描述

(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤

相关的医学特征,最后一列表示肿瘤类型的数值。

(2)包含16个缺失值,用”?”标出。

2.2 案例分析

1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,目标值
2.3 分割数据
3.特征工程(标准化)
4.机器学习(逻辑回归)
5.模型评估

2.3 代码实现

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                  names=names)
data.head()
# 2.基本数据处理
# 2.1 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

在很多分类场景当中我们不一定只关注预测的准确率!!!!!

比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。


2.4 小结

  • 肿瘤预测案例实现【知道】
    • 如果数据中有缺失值,一定要对其进行处理
    • 准确率并不是衡量分类正确的唯一标准

以上是关于机器学习逻辑回归对肿瘤预测的主要内容,如果未能解决你的问题,请参考以下文章

机器学习逻辑回归算法

个人对逻辑回归的理解

机器学习逻辑回归

机器学习逻辑回归

机器学习|逻辑回归|吴恩达学习笔记 | 牛顿法

机器学习:基于逻辑回归对某银行客户违约预测分析