ROS1云课→25机器人控制配置

Posted zhangrelay

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ROS1云课→25机器人控制配置相关的知识,希望对你有一定的参考价值。

ROS1云课→24机器人感知配置


移动机器人控制和运动学动力学模型密切相关。

差动驱动轮系统控制器。控制采用速度命令的形式,将其拆分然后发送到差动驱动轴距的两个车轮上。里程计是从硬件的反馈中计算出来的,并发布。如果仿真就简单了很多。

参考如下(机器翻译):

带转向机构的车轮系统控制器。控制采用速度命令的形式,该命令被拆分然后发送到转向驱动轮座的单个后轮和单个前转向。里程计是从硬件的反馈中计算出来的,并发布。

创建基础控制器

对于导航功能包集来说,一个基础控制器是非常重要的,因为这是唯一能够有效地控制机器人的方法。它能够直接和机器人的电子设备通信。

ROS并不提供任何标准的基础控制器,因此必须自己编写针对移动平台的基础控制器。

机器人通过geometry_msgs/Twist类型的消息进行控制。这个类型正是之前看到的Odometry消息所使用的。

所以基础控制器必须订阅名称为cmd_vel的主题,必须生成正确的线速度和角速度命令来驱动平台。

现在先复习一下消息的结构。在命令行窗口内输入以下命令查看消息的具体结构:

$ rosmsg show geometry_msgs/Twist

这个命令的输出结果如下所示:

 

二维环境控制:

geometry_msgs/Vector3 linear
  float64 x
  float64 y
  float64 z
geometry_msgs/Vector3 angular
  float64 x
  float64 y
  float64 z
 

三维环境控制:

geometry_msgs/Vector3 linear
  float64 x
  float64 y
  float64 z

geometry_msgs/Vector3 angular
  float64 x
  float64 y
  float64 z

 

其中,线速度向量linear包含了xyz轴的线速度。角速度向量angular包含了各个轴向的角速度。

两轮差速结构(diff):

diff-drive-controller

对于两轮机器人,只需要使用线速度x和角速度z。这是因为机器人基于差动轮驱动平台,驱动它的两个电动机只能够让机器人前进、后退或者转向。

车式转向结构(ackermann):

rosmsg show ackermann_msgs/AckermannDrive             [21:27:00]
float32 steering_angle
float32 steering_angle_velocity
float32 speed
float32 acceleration
float32 jerk
mobile_base_controller:
  type        : "ackermann_steering_controller/AckermannSteeringController"
  rear_wheel: 'rear_wheel_joint'
  front_steer: 'front_steer_joint'
  publish_rate: 50.0               # default: 50
  pose_covariance_diagonal : [0.001, 0.001, 1000000.0, 1000000.0, 1000000.0, 1000.0]
  twist_covariance_diagonal: [0.001, 0.001, 1000000.0, 1000000.0, 1000000.0, 1000.0]

  # Wheel separation between the rear and the front, and diameter of the rear. 
  # These are both optional.
  # ackermann_steering_controller will attempt to read either one or both from the
  # URDF if not specified as a parameter.
  wheel_separation_h : 1.0
  wheel_radius : 0.3

  # Wheel separation and radius multipliers for odometry calibration.
  wheel_separation_h_multiplier: 1.0 # default: 1.0
  wheel_radius_multiplier    : 1.0 # default: 1.0

  # Steer position angle multipliers for fine tuning.
  steer_pos_multiplier       : 1.0

  # Velocity commands timeout [s], default 0.5
  cmd_vel_timeout: 0.25

  # Base frame_id
  base_frame_id: base_footprint #default: base_link

  # Odom frame_id
  odom_frame_id: odom

  # Velocity and acceleration limits
  # Whenever a min_* is unspecified, default to -max_*
  linear:
    x:
      has_velocity_limits    : true
      max_velocity           : 1.0  # m/s
      min_velocity           : -0.5 # m/s
      has_acceleration_limits: true
      max_acceleration       : 0.8  # m/s^2
      min_acceleration       : -0.4 # m/s^2
      has_jerk_limits        : true
      max_jerk               : 5.0 # m/s^3

  angular:
    z:
      has_velocity_limits    : true
      max_velocity           : 1.7  # rad/s
      has_acceleration_limits: true
      max_acceleration       : 1.5  # rad/s^2
      has_jerk_limits        : true
      max_jerk               : 2.5 # rad/s^3

如何在地图中移动机器人呢?

两轮差动cmd_vel。

使用rqt

 

 

如果需要自动避障参考:

/******************************************************************************
   STDR Simulator - Simple Two DImensional Robot Simulator
   Copyright (C) 2013 STDR Simulator
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
   
   Authors : 
   * Manos Tsardoulias, etsardou@gmail.com
   * Aris Thallas, aris.thallas@gmail.com
   * Chris Zalidis, zalidis@gmail.com 
******************************************************************************/
# include "stdr_samples/obstacle_avoidance/obstacle_avoidance.h"

/**
@namespace stdr_samples
@brief The main namespace for STDR Samples
**/ 
namespace stdr_samples

  /**
  @brief Default contructor
  @param argc [int] Number of input arguments
  @param argv [char **] Input arguments
  @return void
  **/
  ObstacleAvoidance::ObstacleAvoidance(int argc,char **argv)
  
    if(argc != 3)
    
      ROS_ERROR(
        "Usage : stdr_obstacle avoidance <robot_frame_id> <laser_frame_id>");
      exit(0);
    
    laser_topic_ = std::string("/") +
      std::string(argv[1]) + std::string("/") + std::string(argv[2]);
    speeds_topic_ = std::string("/") +
      std::string(argv[1]) + std::string("/cmd_vel");
      
    subscriber_ = n_.subscribe(
      laser_topic_.c_str(), 
      1, 
      &ObstacleAvoidance::callback,
      this);
      
    cmd_vel_pub_ = n_.advertise<geometry_msgs::Twist>(speeds_topic_.c_str(), 1);
  
  
  /**
  @brief Default destructor
  @return void
  **/
  ObstacleAvoidance::~ObstacleAvoidance(void)
  
    
  
  
  /**
  @brief Callback for the ros laser message
  @param msg [const sensor_msgs::LaserScan&] The new laser scan message
  @return void
  **/
  void ObstacleAvoidance::callback(const sensor_msgs::LaserScan& msg)
  
    scan_ = msg;
    float linear = 0, rotational = 0;
    for(unsigned int i = 0 ; i < scan_.ranges.size() ; i++)
    
      float real_dist = scan_.ranges[i];
      linear -= cos(scan_.angle_min + i * scan_.angle_increment) 
        / (1.0 + real_dist * real_dist);
      rotational -= sin(scan_.angle_min + i * scan_.angle_increment) 
        / (1.0 + real_dist * real_dist);
    
    geometry_msgs::Twist cmd;
    
    linear /= scan_.ranges.size();
    rotational /= scan_.ranges.size();
    
    //~ ROS_ERROR("%f %f",linear,rotational);
    
    if(linear > 0.3)
    
      linear = 0.3;
    
    else if(linear < -0.3)
    
      linear = -0.3;
    

    cmd.linear.x = 0.3 + linear;
    cmd.angular.z = rotational;
    cmd_vel_pub_.publish(cmd);
  

 

 


 

以上是关于ROS1云课→25机器人控制配置的主要内容,如果未能解决你的问题,请参考以下文章

ROS1云课→27机器人SLAM小结

ROS1云课→27机器人SLAM小结

ROS1云课→26机器人Gmapping等环境地图构建

ROS1云课→26机器人Gmapping等环境地图构建

ROS1云课→24机器人感知配置

ROS1云课→24机器人感知配置