基于opencv 手识识别基础
Posted qianbo_insist
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于opencv 手识识别基础相关的知识,希望对你有一定的参考价值。
手识识别
使用caffe训练的pose_iter_102000.caffemodel 可以直接识别手的各个关节和重要点,这里我们使用opencv 4.4.0,当然我们可以使用更高的版本,区别不大
另外一个就是要使用opencv的dnn模块
在这里插入图片描述
在这里插入图片描述
show me the code
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::dnn;
#ifdef _DEBUG
#pragma comment(lib,"opencv_world440d.lib")
#else
#pragma comment(lib,"opencv_world440.lib")
#endif
const int POSE_PAIRS[20][2] =
0,1, 1,2, 2,3, 3,4, // thumb
0,5, 5,6, 6,7, 7,8, // index
0,9, 9,10, 10,11, 11,12, // middle
0,13, 13,14, 14,15, 15,16, // ring
0,17, 17,18, 18,19, 19,20 // small
;
string protoFile = "hand/pose_deploy.prototxt";
string weightsFile = "hand/pose_iter_102000.caffemodel";
int nPoints = 22;
int main(int argc, char **argv)
cout << "USAGE : ./handPoseImage <imageFile> " << endl;
string imageFile = "qianbo2.jpg";
// Take arguments from commmand line
if (argc == 2)
imageFile = argv[1];
float thresh = 0.01;
Mat frame = imread(imageFile);
Mat frameCopy = frame.clone();
int frameWidth = frame.cols;
int frameHeight = frame.rows;
float aspect_ratio = frameWidth / (float)frameHeight;
int inHeight = 368;
int inWidth = (int(aspect_ratio*inHeight) * 8) / 8;
cout << "inWidth = " << inWidth << " ; inHeight = " << inHeight << endl;
double t = (double)cv::getTickCount();
Net net = readNetFromCaffe(protoFile, weightsFile);
Mat inpBlob = blobFromImage(frame, 1.0 / 255, Size(inWidth, inHeight), Scalar(0, 0, 0), false, false);
net.setInput(inpBlob);
Mat output = net.forward();
int H = output.size[2];
int W = output.size[3];
// find the position of the body parts
vector<Point> points(nPoints);
for (int n = 0; n < nPoints; n++)
// Probability map of corresponding body's part.
Mat probMap(H, W, CV_32F, output.ptr(0, n));
resize(probMap, probMap, Size(frameWidth, frameHeight));
Point maxLoc;
double prob;
minMaxLoc(probMap, 0, &prob, 0, &maxLoc);
if (prob > thresh)
circle(frameCopy, cv::Point((int)maxLoc.x, (int)maxLoc.y), 8, Scalar(0, 255, 255), -1);
cv::putText(frameCopy, cv::format("%d", n), cv::Point((int)maxLoc.x, (int)maxLoc.y), cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 0, 255), 2);
points[n] = maxLoc;
int nPairs = sizeof(POSE_PAIRS) / sizeof(POSE_PAIRS[0]);
for (int n = 0; n < nPairs; n++)
// lookup 2 connected body/hand parts
Point2f partA = points[POSE_PAIRS[n][0]];
Point2f partB = points[POSE_PAIRS[n][1]];
if (partA.x <= 0 || partA.y <= 0 || partB.x <= 0 || partB.y <= 0)
continue;
line(frame, partA, partB, Scalar(0, 255, 255), 8);
circle(frame, partA, 8, Scalar(0, 0, 255), -1);
circle(frame, partB, 8, Scalar(0, 0, 255), -1);
t = ((double)cv::getTickCount() - t) / cv::getTickFrequency();
cout << "Time Taken = " << t << endl;
imshow("Output-Keypoints", frameCopy);
imshow("Output-Skeleton", frame);
imwrite("Output-Skeleton.jpg", frame);
waitKey();
return 0;
以上是关于基于opencv 手识识别基础的主要内容,如果未能解决你的问题,请参考以下文章