IBDFE基于IBDFE的频域均衡matlab仿真

Posted fpga和matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了IBDFE基于IBDFE的频域均衡matlab仿真相关的知识,希望对你有一定的参考价值。

1.软件版本

matlab2015b

2.IBDFE频域均衡方案

目前已有的IBDFE结构如下所示:

      从结构可知,IBDFE由前馈滤波器和反馈滤波器构成,其中C和B表示前馈滤波器和反馈滤波器的系数。从现有的文献和资料上看,目前该结构在计算过程中,每一次迭代均需要进行系数的估计,从而增加了系统实现复杂度。针对问题,目前主要的研究成果例如LC-IBDFE等,其通过将判决信号中的误差与期望信号分离,从而降低了复杂度。但是类似LC-IBDFE的改进思路,其是基于每次迭代的误比特率相同且很小的假设的,实际中这种情况很难满足条件。另外就是在IBDFE中,出现信道严重衰落的时候,会导致过高的相关因子的估计,从而导致误差的扩散。针对这个问题,现有成果主要有联合信道估计和信道均衡的联合均衡算法。但是这样算法的复杂度又进一步增加。

3.部分源码

clc;
clear all;
close all;
warning off;
addpath 'func\\'
rng('default');
rng(1);
Blk_size = 512;      %数据块大小512
Chu_size = 64;       %chu序列,大小64
NFrame   = 1000;  
SNR      = [0:1:14]; %信噪比dB
Modsel   = 2;        %QPSK
Fs       = 10*10^3;  %采样率
Ts       = 1/Fs;        
Fc       = 5*10^3;   %载波频率
Fd       = 10;      %多普勒频移
tau = [0 0.5 0.5 1.2 1.2 2.1 2.1 3.3 3.3 4.8 4.8 6.5 6.5 8.5 10.8]*10^-4;    
pdb = [0 -0.967 -0.967 -0.967 -1.933 -1.933 -1.933 -1.933 -2.900 -2.900 -2.900 -2.900 -2.86 -3.86 -3.84];          
%信道模型
Channel  = rayleighchan(Ts,Fd,tau,pdb);
%FFT变换
H_channel0 = fft(Channel.PathGains./sqrt(sum((abs(Channel.PathGains)).^2)),Blk_size+Chu_size+Chu_size);

%CHU序列
Chuseq = zeros(1,Chu_size);
for k = 0:Chu_size-1
    tmps(k+1) = pi*k^2./Chu_size;
end
I      = cos(tmps);
Q      = sin(tmps);
Chuseq = I+sqrt(-1)*Q;
%误码率
%turbo参数
Mss    = 295;
for n = 1:length(SNR)
    ErrMMSE = 0;
    for k = 1:NFrame
        [n,k]
        rng(k);
        %随机
        Tdin       = randint(1,Mss);
        %利用turbo的交织器,构建TB-DEF,三路输出
        output     = [func_turbo_code(Tdin)];
        output     = reshape(output, 1, []);
        seridata1  = [output,0,0];
        
        %调制
        Data       = modulation(seridata1,Modsel);
        Tx         = [Chuseq,Data,Chuseq];
        Channel0   = Channel.PathGains./sqrt(sum((abs(Channel.PathGains)).^2));
        Rx1        = filter(Channel0,1,Tx);           
        Rx2        = awgn(Rx1,SNR(n),'measured');
        Rx3        = Rx2;%(Chu_size+1:Chu_size+Blk_size);   
        H_channel  = H_channel0;     
        %频域均衡
        Y          = fft(Rx3,Blk_size+Chu_size+Chu_size);       
        Wk         = conj(H_channel)./(H_channel.*conj(H_channel)+10^(-SNR(n)/10)); 
        Zk         = Y.*Wk;
        Qk         = zeros(size(Zk));
        Bk         = (Blk_size-Chu_size)*(abs(H_channel).^2+10^(-SNR(n)/10))./(sum(abs(H_channel).^2+10^(-SNR(n)/10)))-1;
        P          = 5;
        %调用CNN神经网络的输出权值 
        load CNNmodel.mat
        Iter       = 5;
        for iter = 1:Iter
            Wk = conj(H_channel)./(H_channel.*conj(H_channel)+10^(-SNR(n)/10)/P).*(1+Bk);  
            Zk         = Y.*Wk;
            Uk         = Zk-Qk;
            RxMMSE0    = ifft(Uk,Blk_size+Chu_size+Chu_size);    
            xn         = sign(real(RxMMSE0))+sqrt(-1)*sign(imag(RxMMSE0));
            %去UW
            RxMMSE1    = xn(Chu_size+1:Blk_size);
            %进行判决
            RxMMSE     = demodulation(RxMMSE1,Modsel);   
            Tdecode    = round(func_turbo_decode(2*RxMMSE(1:end-2)-1));
            tmps       = Tdecode;
            
            XK         = fft([tmps,Chuseq],length(RxMMSE1));
            %调用CNN深度学习神经网络,计算Bk值
            Bk0        =([H_channel.*conj(H_channel)]+10^(-SNR(n)/10)/P)/(mean(([H_channel.*conj(H_channel)]+10^(-SNR(n)/10)/P)))/(Blk_size)-1;
            Bk         = func_CNN(H_channel,Bk0,cnn);
            Qk         = [XK,ones(1,192)].*Bk;
        end
        CrrMMSE    = find((Tdin-Tdecode) == 0);
        ErrMMSE    = ErrMMSE+(Mss-length(CrrMMSE));
    end
    %统计误码率
    errors(n) = ErrMMSE/(Mss*NFrame*Modsel);
end
 

figure
semilogy(SNR,errors,'b-o');
hold on;
grid on;
xlabel('信噪比SNR(dB)')
ylabel('误码率SBR')

save R1.mat SNR errors

4.仿真结果

 A1-169

高性能云服务器 精品线路独享带宽,毫秒延迟,年中盛惠 1 折起

以上是关于IBDFE基于IBDFE的频域均衡matlab仿真的主要内容,如果未能解决你的问题,请参考以下文章

在matlab中,如何对一个信号的频域进行分析,并画出频域图?

OFDM频域同步基于OFDM数字电视地面广播系统中频域同步技术matlab仿真

实验三 基于MATLAB的离散时间信号的频域分析

matlab 信号的频域分析

MATLAB教程案例22基于MATLAB图像去噪算法仿真——中值滤波高斯滤波以及频域滤波等

基于matlab的BCH编译码算法原理介绍与仿真分析