DL之GRU:基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测

Posted 一个处女座的程序猿

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了DL之GRU:基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测相关的知识,希望对你有一定的参考价值。

DL之GRU:基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测

目录

基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测

# 0、数据集预整理

# 1、读取数据集

# 2、数据预处理

# 2.1、数据清洗

# 2.2、时间格式数据标准化

# 2.3、定义y_train

# 2.4、构造时序性矩阵数据集:基于y重新设计训练集——符合时序性

# 2.5、对训练集进行 Z_score标准归一化处理

# 2.6、将训练集的df格式转为tensor格式

# 3、模型训练

# 3.1、模型建立:定义GRU模型、优化器、损失函数

# 3.2、模型训练:及时保存训练过程中的模型

# 3.3、对标签数据单独进行归一化

# 3.4、基于GRU模型预测:基于训练好的GRU模型,预测test数据集

# 3.5、模型评估


相关文章
DL之GRU(Pytorch框架):基于2022年6月最新上证指数数据集利用GRU算法预测最新股票上证指数实现回归预测
DL之GRU(Pytorch框架):基于2022年6月最新上证指数数据集利用GRU算法预测最新股票上证指数实现回归预测实现

基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测

# 0、数据集预整理

# 数据集下载地址上证指数(000001)历史交易数据_股票行情_网易财经

# 1、读取数据集

(7700, 11)

日期股票代码名称收盘价最高价最低价开盘价前收盘涨跌额涨跌幅成交量成交金额
1990/12/19'000001上证指数99.9899.9895.7996.05NoneNoneNone1260494000
1990/12/20'000001上证指数104.39104.3999.98104.399.984.414.410919784000
1990/12/21'000001上证指数109.13109.13103.73109.07104.394.744.54072816000
1990/12/24'000001上证指数114.55114.55109.13113.57109.135.424.96663231000
1990/12/25'000001上证指数120.25120.25114.55120.09114.555.74.976156000
1990/12/26'000001上证指数125.27125.27120.25125.27120.255.024.174610053000
1990/12/27'000001上证指数125.28125.28125.27125.27125.270.010.00866104000
1990/12/28'000001上证指数126.45126.45125.28126.39125.281.170.933910888000
1990/12/31'000001上证指数127.61127.61126.48126.56126.451.160.91747860000
1991/1/2'000001上证指数128.84128.84127.61127.61127.611.230.96399159000
1991/1/3'000001上证指数130.14130.14128.84128.84128.841.31.00914193000
1991/1/4'000001上证指数131.44131.44130.14131.27130.141.30.9989420261000
1991/1/7'000001上证指数132.06132.06131.45131.99131.440.620.4717217141000
1991/1/8'000001上证指数132.68132.68132.06132.62132.060.620.469529261806000
1991/1/9'000001上证指数133.34133.34132.68133.3132.680.660.497456033228000
1991/1/10'000001上证指数133.97133.97133.34133.93133.340.630.472599905399000
1991/1/11'000001上证指数134.6134.61134.51134.61133.970.630.4703133277115000
1991/1/14'000001上证指数134.67135.19134.11134.11134.60.070.052125306883000
1991/1/15'000001上证指数134.74134.74134.19134.21134.670.070.05214461010000
1991/1/16'000001上证指数134.24134.74134.14134.19134.74-0.5-0.3711509270000

# 2、数据预处理

# 2.1、数据清洗

# 2.2、时间格式数据标准化

利用strptime()函数,将时间改为%Y-%m-%d格式

# 2.3、定义y_train

y_train shape: (7200,)

# 2.4、构造时序性矩阵数据集:基于y重新设计训练集——符合时序性

data_all_train shape: (7190, 11)
data_all_train 
         label_0    label_1    label_2  ...    label_8    label_9          y
0       99.9800   104.3900   109.1300  ...   127.6100   128.8400   130.1400
1      104.3900   109.1300   114.5500  ...   128.8400   130.1400   131.4400
2      109.1300   114.5500   120.2500  ...   130.1400   131.4400   132.0600
3      114.5500   120.2500   125.2700  ...   131.4400   132.0600   132.6800
4      120.2500   125.2700   125.2800  ...   132.0600   132.6800   133.3400
...         ...        ...        ...  ...        ...        ...        ...
7185  2870.3422  2868.4587  2875.4176  ...  2846.5473  2836.8036  2846.2217
7186  2868.4587  2875.4176  2898.5760  ...  2836.8036  2846.2217  2852.3512
7187  2875.4176  2898.5760  2883.7378  ...  2846.2217  2852.3512  2915.4311
7188  2898.5760  2883.7378  2867.9237  ...  2852.3512  2915.4311  2921.3980
7189  2883.7378  2867.9237  2813.7654  ...  2915.4311  2921.3980  2923.3711

[7190 rows x 11 columns]
label_0label_1label_2label_3label_4label_5label_6label_7label_8label_9y
099.98104.39109.13114.55120.25125.27125.28126.45127.61128.84130.14
1104.39109.13114.55120.25125.27125.28126.45127.61128.84130.14131.44
2109.13114.55120.25125.27125.28126.45127.61128.84130.14131.44132.06
3114.55120.25125.27125.28126.45127.61128.84130.14131.44132.06132.68
4120.25125.27125.28126.45127.61128.84130.14131.44132.06132.68133.34
5125.27125.28126.45127.61128.84130.14131.44132.06132.68133.34133.97
6125.28126.45127.61128.84130.14131.44132.06132.68133.34133.97134.6
7126.45127.61128.84130.14131.44132.06132.68133.34133.97134.6134.67
8127.61128.84130.14131.44132.06132.68133.34133.97134.6134.67134.74
9128.84130.14131.44132.06132.68133.34133.97134.6134.67134.74134.24
10130.14131.44132.06132.68133.34133.97134.6134.67134.74134.24134.25
11131.44132.06132.68133.34133.97134.6134.67134.74134.24134.25134.24
12132.06132.68133.34133.97134.6134.67134.74134.24134.25134.24134.24
13132.68133.34133.97134.6134.67134.74134.24134.25134.24134.24133.72
14133.34133.97134.6134.67134.74134.24134.25134.24134.24133.72133.17
15133.97134.6134.67134.74134.24134.25134.24134.24133.72133.17132.61
16134.6134.67134.74134.24134.25134.24134.24133.72133.17132.61132.05
17134.67134.74134.24134.25134.24134.24133.72133.17132.61132.05131.46
18134.74134.24134.25134.24134.24133.72133.17132.61132.05131.46130.95
19134.24134.25134.24134.24133.72133.17132.61132.05131.46130.95130.44
20134.25134.24134.24133.72133.17132.61132.05131.46130.95130.44129.97
21134.24134.24133.72133.17132.61132.05131.46130.95130.44129.97129.51

# 2.5、对训练集进行 Z_score标准归一化处理

data_all_tr2arr_mean: 1964.7695519269184
data_all_tr2arr_std: 1068.4654234837196

# 2.6、将训练集的df格式转为tensor格式

train_loader: 
 <torch.utils.data.dataloader.DataLoader object at 0x0000014BB5A68AC8>

# 3、模型训练

# 3.1、模型建立:定义GRU模型、优化器、损失函数

采用GRU+Fully Connected Layer, hidden_size=64

# 3.2、模型训练:及时保存训练过程中的模型

1 tensor(0.3308, grad_fn=<MseLossBackward>)
2 tensor(0.1350, grad_fn=<MseLossBackward>)
3 tensor(0.0127, grad_fn=<MseLossBackward>)
4 tensor(0.0110, grad_fn=<MseLossBackward>)
5 tensor(0.0114, grad_fn=<MseLossBackward>)
6 tensor(0.0099, grad_fn=<MseLossBackward>)
7 tensor(0.0222, grad_fn=<MseLossBackward>)
8 tensor(0.0130, grad_fn=<MseLossBackward>)
9 tensor(0.0150, grad_fn=<MseLossBackward>)
10 tensor(0.0133, grad_fn=<MseLossBackward>)
11 tensor(0.0057, grad_fn=<MseLossBackward>)
12 tensor(0.0163, grad_fn=<MseLossBackward>)
13 tensor(0.0216, grad_fn=<MseLossBackward>)
14 tensor(0.0193, grad_fn=<MseLossBackward>)
15 tensor(0.0333, grad_fn=<MseLossBackward>)
16 tensor(0.0146, grad_fn=<MseLossBackward>)
17 tensor(0.0118, grad_fn=<MseLossBackward>)
18 tensor(0.0052, grad_fn=<MseLossBackward>)
19 tensor(0.0046, grad_fn=<MseLossBackward>)
20 tensor(0.0033, grad_fn=<MseLossBackward>)
21 tensor(0.0078, grad_fn=<MseLossBackward>)
22 tensor(0.0088, grad_fn=<MseLossBackward>)
23 tensor(0.0049, grad_fn=<MseLossBackward>)
24 tensor(0.0085, grad_fn=<MseLossBackward>)
25 tensor(0.0044, grad_fn=<MseLossBackward>)
26 tensor(0.0034, grad_fn=<MseLossBackward>)
27 tensor(0.0050, grad_fn=<MseLossBackward>)
28 tensor(0.0070, grad_fn=<MseLossBackward>)
29 tensor(0.0072, grad_fn=<MseLossBackward>)
30 tensor(0.0065, grad_fn=<MseLossBackward>)
31 tensor(0.0037, grad_fn=<MseLossBackward>)
32 tensor(0.0054, grad_fn=<MseLossBackward>)
33 tensor(0.0033, grad_fn=<MseLossBackward>)
34 tensor(0.0314, grad_fn=<MseLossBackward>)
35 tensor(0.0035, grad_fn=<MseLossBackward>)
36 tensor(0.0063, grad_fn=<MseLossBackward>)
37 tensor(0.0080, grad_fn=<MseLossBackward>)
38 tensor(0.0028, grad_fn=<MseLossBackward>)
39 tensor(0.0068, grad_fn=<MseLossBackward>)
40 tensor(0.0040, grad_fn=<MseLossBackward>)
41 tensor(0.0021, grad_fn=<MseLossBackward>)
42 tensor(0.0031, grad_fn=<MseLossBackward>)
43 tensor(0.0017, grad_fn=<MseLossBackward>)
44 tensor(0.0040, grad_fn=<MseLossBackward>)
45 tensor(0.0025, grad_fn=<MseLossBackward>)
46 tensor(0.0018, grad_fn=<MseLossBackward>)
47 tensor(0.0041, grad_fn=<MseLossBackward>)
48 tensor(0.0025, grad_fn=<MseLossBackward>)
49 tensor(0.0013, grad_fn=<MseLossBackward>)
50 tensor(0.0034, grad_fn=<MseLossBackward>)
51 tensor(0.0014, grad_fn=<MseLossBackward>)
52 tensor(0.0045, grad_fn=<MseLossBackward>)
53 tensor(0.0051, grad_fn=<MseLossBackward>)
54 tensor(0.0036, grad_fn=<MseLossBackward>)
55 tensor(0.0019, grad_fn=<MseLossBackward>)
56 tensor(0.0046, grad_fn=<MseLossBackward>)
57 tensor(0.0032, grad_fn=<MseLossBackward>)
58 tensor(0.0033, grad_fn=<MseLossBackward>)
59 tensor(0.0033, grad_fn=<MseLossBackward>)
60 tensor(0.0025, grad_fn=<MseLossBackward>)
61 tensor(0.0021, grad_fn=<MseLossBackward>)
62 tensor(0.0021, grad_fn=<MseLossBackward>)
63 tensor(0.0036, grad_fn=<MseLossBackward>)
64 tensor(0.0018, grad_fn=<MseLossBackward>)
65 tensor(0.0075, grad_fn=<MseLossBackward>)
66 tensor(0.0074, grad_fn=<MseLossBackward>)
67 tensor(0.0010, grad_fn=<MseLossBackward>)
68 tensor(0.0018, grad_fn=<MseLossBackward>)
69 tensor(0.0039, grad_fn=<MseLossBackward>)
70 tensor(0.0009, grad_fn=<MseLossBackward>)
71 tensor(0.0035, grad_fn=<MseLossBackward>)
72 tensor(0.0035, grad_fn=<MseLossBackward>)
73 tensor(0.0011, grad_fn=<MseLossBackward>)
74 tensor(0.0047, grad_fn=<MseLossBackward>)
75 tensor(0.0020, grad_fn=<MseLossBackward>)
76 tensor(0.0008, grad_fn=<MseLossBackward>)
77 tensor(0.0019, grad_fn=<MseLossBackward>)
78 tensor(0.0019, grad_fn=<MseLossBackward>)
79 tensor(0.0025, grad_fn=<MseLossBackward>)
80 tensor(0.0013, grad_fn=<MseLossBackward>)
81 tensor(0.0023, grad_fn=<MseLossBackward>)
82 tensor(0.0028, grad_fn=<MseLossBackward>)
83 tensor(0.0020, grad_fn=<MseLossBackward>)
84 tensor(0.0017, grad_fn=<MseLossBackward>)
85 tensor(0.0010, grad_fn=<MseLossBackward>)
86 tensor(0.0011, grad_fn=<MseLossBackward>)
87 tensor(0.0048, grad_fn=<MseLossBackward>)
88 tensor(0.0008, grad_fn=<MseLossBackward>)
89 tensor(0.0008, grad_fn=<MseLossBackward>)
90 tensor(0.0015, grad_fn=<MseLossBackward>)
91 tensor(0.0024, grad_fn=<MseLossBackward>)
92 tensor(0.0036, grad_fn=<MseLossBackward>)
93 tensor(0.0030, grad_fn=<MseLossBackward>)
94 tensor(0.0017, grad_fn=<MseLossBackward>)
95 tensor(0.0005, grad_fn=<MseLossBackward>)
96 tensor(0.0014, grad_fn=<MseLossBackward>)
97 tensor(0.0037, grad_fn=<MseLossBackward>)
98 tensor(0.0048, grad_fn=<MseLossBackward>)
99 tensor(0.0022, grad_fn=<MseLossBackward>)
100 tensor(0.0006, grad_fn=<MseLossBackward>)
101 tensor(0.0005, grad_fn=<MseLossBackward>)
102 tensor(0.0027, grad_fn=<MseLossBackward>)
103 tensor(0.0015, grad_fn=<MseLossBackward>)
104 tensor(0.0014, grad_fn=<MseLossBackward>)
105 tensor(0.0029, grad_fn=<MseLossBackward>)
106 tensor(0.0011, grad_fn=<MseLossBackward>)
107 tensor(0.0082, grad_fn=<MseLossBackward>)
108 tensor(0.0017, grad_fn=<MseLossBackward>)
109 tensor(0.0034, grad_fn=<MseLossBackward>)
110 tensor(0.0010, grad_fn=<MseLossBackward>)
111 tensor(0.0015, grad_fn=<MseLossBackward>)
112 tensor(0.0017, grad_fn=<MseLossBackward>)
113 tensor(0.0016, grad_fn=<MseLossBackward>)
114 tensor(0.0006, grad_fn=<MseLossBackward>)
115 tensor(0.0023, grad_fn=<MseLossBackward>)
116 tensor(0.0006, grad_fn=<MseLossBackward>)
117 tensor(0.0018, grad_fn=<MseLossBackward>)
118 tensor(0.0013, grad_fn=<MseLossBackward>)
119 tensor(0.0016, grad_fn=<MseLossBackward>)
120 tensor(0.0007, grad_fn=<MseLossBackward>)
121 tensor(0.0007, grad_fn=<MseLossBackward>)
122 tensor(0.0043, grad_fn=<MseLossBackward>)
123 tensor(0.0038, grad_fn=<MseLossBackward>)
124 tensor(0.0011, grad_fn=<MseLossBackward>)
125 tensor(0.0025, grad_fn=<MseLossBackward>)
126 tensor(0.0013, grad_fn=<MseLossBackward>)
127 tensor(0.0005, grad_fn=<MseLossBackward>)
128 tensor(0.0013, grad_fn=<MseLossBackward>)
129 tensor(0.0021, grad_fn=<MseLossBackward>)
130 tensor(0.0011, grad_fn=<MseLossBackward>)
131 tensor(0.0034, grad_fn=<MseLossBackward>)
132 tensor(0.0022, grad_fn=<MseLossBackward>)
133 tensor(0.0019, grad_fn=<MseLossBackward>)
134 tensor(0.0020, grad_fn=<MseLossBackward>)
135 tensor(0.0009, grad_fn=<MseLossBackward>)
136 tensor(0.0100, grad_fn=<MseLossBackward>)
137 tensor(0.0009, grad_fn=<MseLossBackward>)
138 tensor(0.0012, grad_fn=<MseLossBackward>)
139 tensor(0.0009, grad_fn=<MseLossBackward>)
140 tensor(0.0003, grad_fn=<MseLossBackward>)
141 tensor(0.0007, grad_fn=<MseLossBackward>)
142 tensor(0.0017, grad_fn=<MseLossBackward>)
143 tensor(0.0027, grad_fn=<MseLossBackward>)
144 tensor(0.0149, grad_fn=<MseLossBackward>)
145 tensor(0.0027, grad_fn=<MseLossBackward>)
146 tensor(0.0024, grad_fn=<MseLossBackward>)
147 tensor(0.0013, grad_fn=<MseLossBackward>)
148 tensor(0.0011, grad_fn=<MseLossBackward>)
149 tensor(0.0006, grad_fn=<MseLossBackward>)
150 tensor(0.0008, grad_fn=<MseLossBackward>)
save success! F:\\File_Python\\……\\20220627_models/RNN_GRU_Model_300_150.pkl

# 3.3、对标签数据单独进行归一化

y2arr_normal:
 [-1.74529705 -1.74116964 -1.73673337 ...  1.26852879  1.29623048
  1.32378233]

# 3.4、基于GRU模型预测:基于训练好的GRU模型,预测test数据集

 cut_train_test: 7700 7200

# 3.5、模型评估

cut_train_test: 7700 7400
RNN_GRU_Model_300 R2    value: 0.8737662561295777
RNN_GRU_Model_300 MAE   value: 48.39948391799124
RNN_GRU_Model_300 MSE   value: 3773.501360880409

# 对比真实值VS预测值曲线  

 

以上是关于DL之GRU:基于2022年6月最新上证指数数据集结合Pytorch框架利用GRU算法预测最新股票上证指数实现回归预测的主要内容,如果未能解决你的问题,请参考以下文章

DL之LSTM/GRU/CNN:基于tensorflow框架分别利用LSTM/GRUCNN算法对上海最高气温实现回归预测案例

指数基金介绍专栏:上证180指数

TF之LSTM/GRU:基于tensorflow框架对boston房价数据集分别利用LSTMGRU算法(batch_size调优对比)实现房价回归预测案例

最新自然指数:28 所中国高校,跻身世界大学 100 强!

2018年7月9日 股票大数据分析报告

2019年,来炒股吧。错过这一波,你要多奋斗十年?