LeetCode(85) Maximal Rectangle
Posted 逆風的薔薇
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode(85) Maximal Rectangle相关的知识,希望对你有一定的参考价值。
题目
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 6.
分析
求给定只包含'0'和‘1’的矩阵中,由连续的‘1’组成的最大矩阵面积。这道题基于直方图的最大长方形的延伸,听过左神在牛客上的算法精讲课的小伙伴应该都有很清晰的思路。 这道题的关键就是 先将矩阵转化为数组,算法原型即求直方图的最大面积。代码
/*
LeetCode 85_Maximal Rectangle.cpp
*/
#include <iostream>
#include <cstdlib>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
class Solution
public:
int maximalRectangle(vector<vector<char>>& matrix)
if (matrix.empty())
return 0;
int m = matrix.size(), n = matrix[0].size();
vector<int> heights(n, 0);
int maxArea = 0;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
if (matrix[i][j] == '1')
++heights[j];
else
heights[j] = 0;
//else
//for
maxArea = max(maxArea, largestRectangleArea(heights));
//for
return maxArea;
/*求直方图中最大矩形面积,利用栈*/
int largestRectangleArea(vector<int> &heights)
if (heights.empty())
return 0;
int n = heights.size();
int maxArea = 0;
stack<int> st;
for (int i = 0; i < n; ++i)
/*当前高度高于栈顶索引*/
while (!st.empty() && heights[i] <= heights[st.top()])
//计算栈顶索引左右扩展对应的最大长方形面积
int idx = st.top();
st.pop();
int left = st.empty() ? -1 : st.top();
int curArea = (i - left - 1)*heights[idx];
maxArea = max(maxArea, curArea);
//if
st.push(i);
//for
/*检验栈中剩余元素*/
while (!st.empty())
int idx = st.top();
st.pop();
int left = st.empty() ? -1 : st.top();
int curArea = (n - left - 1)*heights[idx];
maxArea = max(maxArea, curArea);
//while
return maxArea;
;
int main()
vector<vector<char>> v = '1','0','1','1','1',
'0','1','0','1','0',
'1','1','0','1','1' ,
'0','1','1','1','1'
;
cout << Solution().maximalRectangle(v) << endl;
system("pause");
return 0;
以上是关于LeetCode(85) Maximal Rectangle的主要内容,如果未能解决你的问题,请参考以下文章
Leetcode 85. Maximal Rectangle
Leetcode 85. Maximal Rectangle
LeetCode 85: Maximal Recetangle
LeetCode(85) Maximal Rectangle