节Avro序列化的使用

Posted 样柏

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了节Avro序列化的使用相关的知识,希望对你有一定的参考价值。

《Kafka权威指南》序列化章节中有对AVRO序列化的代码实现,刚好工作中遇到相关知识,运行下书中的代码,了解下 模式注册表(Schema Registry)

Confluent Schema Registry的使用

在工作中使用传统的 avro API 自定义序列化类和反序列化类 结果就是在每条Kafka记录里都嵌入了schema,这会让记录的大小成倍地增加。不管怎样,在读取记录时仍然需要用到整个 schema,所以要先找到 schema。有没有什么方法可以让数据共用一个schema?

遵循通用的结构模式并使用"schema注册表"来达到目的。"schema注册表"的原理如下:


把所有写入数据需要用到的 schema 保存在注册表里,然后在记录里引用 schema 的 ID。负责读取数据的应用程序使用 ID 从注册表里拉取 schema 来反序列化记录。序列化器和反序列化器分别负责处理 schema 的注册和拉取。

schema注册表并不属于Kafka,现在已经有一些开源的schema 注册表实现。比如本文要讨论的Confluent Schema Registry。

安装和使用参考: 这里

步骤:用curl 把 schema 中的内容注册到 Confluent Schema Registry 中,Kafka Producer 和 Kafka Consumer 通过识别 Confluent Schema Registry 中的 schema 内容来序列化和反序列化。

schema


    "type": "record",
    "name": "User",
    "fields": [
        "name": "id", "type": "int",
        "name": "name",  "type": "string",
        "name": "age", "type": "int"
    ]

部分需要转义


    "schema": "
        \\"type\\": \\"record\\",
        \\"name\\": \\"User\\",
        \\"fields\\": [
            \\"name\\": \\"id\\", \\"type\\": \\"int\\",
            \\"name\\": \\"name\\",  \\"type\\": \\"string\\",
            \\"name\\": \\"age\\", \\"type\\": \\"int\\"
        ]
    "

放入 - -data中

curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \\
--data '"schema": "\\"type\\": \\"record\\", \\"name\\": \\"User\\", \\"fields\\": [\\"name\\": \\"id\\", \\"type\\": \\"int\\", \\"name\\": \\"name\\",  \\"type\\": \\"string\\", \\"name\\": \\"age\\", \\"type\\": \\"int\\"]"' \\
http://192.168.42.89:8081/subjects/dev3-yangyunhe-topic001-value/versions

地址栏:http://nn1.hadoop:8081/subjects/ $topicName /versions

Producer代码:

package com.registry.producer

import com.registry.utils.SchemaUtils
import org.apache.avro.generic.GenericData, GenericRecord
import org.apache.kafka.clients.producer.KafkaProducer, Producer, ProducerRecord
import java.util.Properties, Random

/**
 * @describe: -
 * @author: Wang Yang
 * @createDate: 2022/6/11 19:12
 */
object ConfluentProducer 
  def main(args: Array[String]): Unit = 
    val props = new Properties
    props.put("bootstrap.servers", "nn1.hadoop:9092")
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    // 使用Confluent实现的KafkaAvroSerializer
    props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer")
    // 添加schema服务的地址,用于获取schema
    props.put("schema.registry.url", "http://nn1.hadoop:8081")
    val topic = "test01"
    val producer = new KafkaProducer[String, GenericRecord](props)
    val rand = new Random

    for (i <- 0 until 100) 
      val name = "name" + i
      val age = rand.nextInt(40) + 1
      val user = new GenericData.Record(SchemaUtils.getSchema(topic))
      user.put("id", i)
      user.put("name", name)
      user.put("age", age)
      val record = new ProducerRecord[String, GenericRecord](topic, user)
      producer.send(record)
      System.out.println("send:" + "id:" + i + ",name" + name + ",age" + age)
      Thread.sleep(1000)
    
  



Schema工具类代码:

package com.registry.utils

import io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient, SchemaMetadata
import org.apache.avro.Schema

/**
 * @describe: SchemaUtils
 * @author: Wang Yang
 * @createDate: 2022/6/11 20:10
 */

object SchemaUtils 
  var topicSchema: Map[String, Schema] = Map[String, Schema]()

  //topic1,topic2 ...
  var topicList = "test01"

  //调用Registry服务接口 获取schema 
  val Client = new CachedSchemaRegistryClient("http://nn1.hadoop:8081", 100)
  private val topics = topicList.split(",")
  putSchema(Client, topics)

  //通过topic名字获取topic名的 schema
  def getSchema(topic: String): Schema = topicSchema(topic)

  //放入topic
  def putSchema(client: CachedSchemaRegistryClient, topics: Array[String]): Unit = 
    for (topic <- topics) 
      val metadata = client.getLatestSchemaMetadata(topic)
      val schema = new Schema.Parser().parse(metadata.getSchema)
      topicSchema += (topic -> schema)
    
  


Consumer代码:这个例子由 sparkStreaming 改写

package com.registry.consumer

import org.apache.avro.generic.GenericRecord
import org.apache.kafka.clients.consumer.ConsumerConfig, ConsumerRecord
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.ConsumerStrategies, ConsumerStrategy, KafkaUtils, LocationStrategies, LocationStrategy
import org.apache.spark.streaming.Durations, StreamingContext
import scala.collection.mutable

/**
 * @describe: ConfluentConsumer
 * @author: Wang Yang
 * @createDate: 2022/6/11 20:36
 *
 * 这里使用的是kafka2.11版本
 */
object ConfluentConsumer 
  def main(args: Array[String]): Unit = 
    val conf: SparkConf = new SparkConf()
      .setMaster("local[10]")
      .set("spark.ui.port", "8086")
      .setAppName("TestConfluentConsumer")

    val ssc: StreamingContext = new StreamingContext(conf, Durations.seconds(2))
    ssc.sparkContext.setLogLevel("WARN")

    // 读取kafka的配置
    val kafkaParams = new mutable.HashMap[String, Object]()
    kafkaParams += "bootstrap.servers" -> "nn1.hadoop:9092"
    kafkaParams += "group.id" -> "default"
    kafkaParams += "enable.auto.commit" -> "true"
    kafkaParams += "auto.offset.reset" -> "earliest"
    kafkaParams += "schema.registry.url" -> "nn1.hadoop:8081"
    kafkaParams += ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"
    //这里使用的包是 kafka-avro-serializer-4.1.1.jar
    kafkaParams += ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "io.confluent.kafka.serializers.KafkaAvroDeserializer"
    val topic = "test01"
    val locationStrategy: LocationStrategy = LocationStrategies.PreferConsistent
    val consumerStategy: ConsumerStrategy[String, GenericRecord] = ConsumerStrategies.Subscribe[String, GenericRecord](topic.split(",").toSet, kafkaParams)
    val kafkaDS: InputDStream[ConsumerRecord[String, GenericRecord]] = KafkaUtils.createDirectStream(ssc, locationStrategy, consumerStategy)

    kafkaDS.foreachRDD((records, t) => 
      //records里包含了一批数据
      records.foreach(record=>
        val user = record.value()
        println(s"time:$t ---- value = [user.id = " + user.get("id") + ", " + "user.name = " + user.get("name") + ", " + "user.age = " + user.get("age") + "], " + "partition = " + record.partition + ", " + "offset = " + record.offset)
      )
      println(s"time:$t")
    )

    ssc.start()
    ssc.awaitTermination()
  

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.wy.cn</groupId>
    <artifactId>avrodemo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>2.1.1</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.1.1</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.6.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.8.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.3.0</version>
        </dependency>

        <!--   版本过低    -->
        <!--&lt;!&ndash;   此依赖下面指定了仓库来源    &ndash;&gt;-->
        <!--        <dependency>-->
        <!--            <groupId>io.confluent</groupId>-->
        <!--            <artifactId>kafka-avro-serializer</artifactId>-->
        <!--            <version>1.0</version> &lt;!&ndash; Also tried 2.0-SNAPSHOT  &ndash;&gt;-->
        <!--        </dependency>-->
    </dependencies>

    <repositories>
        <repository>
            <id>confluent</id>
            <url>http://packages.confluent.io/maven/</url>
        </repository>
    </repositories>
</project>

本文参考:https://www.jianshu.com/p/cd6f413d35b0

以上是关于节Avro序列化的使用的主要内容,如果未能解决你的问题,请参考以下文章

一文解析Apache Avro数据

在 avro 中存储模式有啥好处?

一文解析Apache Avro数据

Avro和Thrift区别(未完待续)

Apache Avro 1.11.0 入门 (Java 版本)

Apache Avro 1.11.0 入门 (Java 版本)