002:数据湖有哪些特征

Posted YoungerChina

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了002:数据湖有哪些特征相关的知识,希望对你有一定的参考价值。

个人觉得可以从数据和计算两个层面进一步分析数据湖应该具备哪些特征。

1. 数据方面的特征

  • “保真性”。数据湖中对于业务系统中的数据都会存储一份“一模一样”的完整拷贝。与数据仓库不同的地方在于,数据湖中必须要保存一份原始数据,无论是数据格式、数据模式、数据内容都不应该被修改。在这方面,数据湖强调的是对于业务数据“原汁原味”的保存。同时,数据湖应该能够存储任意类型/格式的数据。

  • “灵活性”:上表一个点是 “写入型 schema” v.s.“读取型 schema”,其实本质上来讲是数据 schema 的设计发生在哪个阶段的问题。对于任何数据应用来说,其实 schema 的设计都是必不可少的,即使是 mongoDB 等一些强调“无模式”的数据库,其最佳实践里依然建议记录尽量采用相同/相似的结构。“写入型 schema”背后隐含的逻辑是数据在写入之前,就需要根据业务的访问方式确定数据的 schema,然后按照既定 schema,完成数据导入,带来的好处是数据与业务的良好适配;但是这也意味着数仓的前期拥有成本会比较高,特别是当业务模式不清晰、业务还处于探索阶段时,数仓的灵活性不够。数据湖强调的“读取型 schema”,背后的潜在逻辑则是认为业务的不确定性是常态:我们无法预期业务的变化,那么我们就保持一定的灵活性,将设计去延后,让整个基础设施具备使数据“按需”贴合业务的能力。因此,个人认为“保真性”和“灵活性”是一脉相承的:既然没办法预估业务的变化,那么索性保持数据最为原始的状态,一旦需要时,可以根据需求对数据进行加工处理。因此,数据湖更加适合创新型企业、业务高速变化发展的企业。同时,数据湖的用户也相应的要求更高,数据科学家、业务分析师(配合一定的可视化工具)是数据湖的目标客户。

  • “可管理”:数据湖应该提供完善的数据管理能力。既然数据要求“保真性”和“灵活性”,那么至少数据湖中会存在两类数据:原始数据和处理后的数据。数据湖中的数据会不断的积累、演化。因此,对于数据管理能力也会要求很高,至少应该包含以下数据管理能力:数据源、数据连接、数据格式、数据 schema(库/表/列/行)。同时,数据湖是单个企业/组织中统一的数据存放场所,因此,还需要具有一定的权限管理能力。

  • “可追溯”:数据湖是一个组织/企业中全量数据的存储场所,需要对数据的全生命周期进行管理,包括数据的定义、接入、存储、处理、分析、应用的全过程。一个强大的数据湖实现,需要能做到对其间的任意一条数据的接入、存储、处理、消费过程是可追溯的,能够清楚的重现数据完整的产生过程和流动过程。

2. 计算方面的特征

个人认为数据湖对于计算能力要求其实非常广泛,完全取决于业务对于计算的要求。

  • 丰富的计算引擎。从批处理、流式计算、交互式分析到机器学习,各类计算引擎都属于数据湖应该囊括的范畴。一般情况下,数据的加载、转换、处理会使用批处理计算引擎;需要实时计算的部分,会使用流式计算引擎;对于一些探索式的分析场景,可能又需要引入交互式分析引擎。随着大数据技术与人工智能技术的结合越来越紧密,各类机器学习/深度学习算法也被不断引入,例如 TensorFlow/PyTorch 框架已经支持从 HDFS/S3/OSS 上读取样本数据进行训练。因此,对于一个合格的数据湖项目而言,计算引擎的可扩展/可插拔,应该是一类基础能力。

  • 多模态的存储引擎。理论上,数据湖本身应该内置多模态的存储引擎,以满足不同的应用对于数据访问需求(综合考虑响应时间/并发/访问频次/成本等因素)。但是,在实际的使用过程中,数据湖中的数据通常并不会被高频次的访问,而且相关的应用也多在进行探索式的数据应用,为了达到可接受的性价比,数据湖建设通常会选择相对便宜的存储引擎(如 S3/OSS/HDFS/OBS),并且在需要时与外置存储引擎协同工作,满足多样化的应用需求。

以上是关于002:数据湖有哪些特征的主要内容,如果未能解决你的问题,请参考以下文章

弹性裸金属服务器有哪些特征?

002-决策树构造实例

最新大厂数据湖面试题,知识点总结

最新大厂数据湖面试题,知识点总结

最新大厂数据湖面试题,知识点总结

最新大厂数据湖面试题,知识点总结