3d激光雷达开发(八叉树)
Posted 费晓行
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了3d激光雷达开发(八叉树)相关的知识,希望对你有一定的参考价值。
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】
和kd树一样,八叉树也是一种数据管理方式。如果二叉树分别由左子树和右子树两个分支,那么八叉树就有八个分支。选择这一种数据结构主要也是为了查找方便。参考代码可以查找这个链接,https://pcl.readthedocs.io/projects/tutorials/en/master/octree.html#octree-search
1、准备octree_search.cpp文件
#include <pcl/point_cloud.h>
#include <pcl/octree/octree_search.h>
#include <iostream>
#include <vector>
#include <ctime>
int
main ()
srand ((unsigned int) time (NULL));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
// Generate pointcloud data
cloud->width = 1000;
cloud->height = 1;
cloud->points.resize (cloud->width * cloud->height);
for (std::size_t i = 0; i < cloud->size (); ++i)
(*cloud)[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
(*cloud)[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
(*cloud)[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
float resolution = 128.0f;
pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree (resolution);
octree.setInputCloud (cloud);
octree.addPointsFromInputCloud ();
pcl::PointXYZ searchPoint;
searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
// Neighbors within voxel search
std::vector<int> pointIdxVec;
if (octree.voxelSearch (searchPoint, pointIdxVec))
std::cout << "Neighbors within voxel search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z << ")"
<< std::endl;
for (std::size_t i = 0; i < pointIdxVec.size (); ++i)
std::cout << " " << (*cloud)[pointIdxVec[i]].x
<< " " << (*cloud)[pointIdxVec[i]].y
<< " " << (*cloud)[pointIdxVec[i]].z << std::endl;
// K nearest neighbor search
int K = 10;
std::vector<int> pointIdxNKNSearch;
std::vector<float> pointNKNSquaredDistance;
std::cout << "K nearest neighbor search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with K=" << K << std::endl;
if (octree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
for (std::size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
std::cout << " " << (*cloud)[ pointIdxNKNSearch[i] ].x
<< " " << (*cloud)[ pointIdxNKNSearch[i] ].y
<< " " << (*cloud)[ pointIdxNKNSearch[i] ].z
<< " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
// Neighbors within radius search
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
float radius = 256.0f * rand () / (RAND_MAX + 1.0f);
std::cout << "Neighbors within radius search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with radius=" << radius << std::endl;
if (octree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
for (std::size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
std::cout << " " << (*cloud)[ pointIdxRadiusSearch[i] ].x
<< " " << (*cloud)[ pointIdxRadiusSearch[i] ].y
<< " " << (*cloud)[ pointIdxRadiusSearch[i] ].z
<< " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
2、代码分析
和kd树一样,八叉树也支持最近点查找和半径查找。除此之外,八叉树还支持体素查找,这是额外的一种查找方法。
3、准备CMakeLists.txt文件
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(octree_search)
find_package(PCL 1.2 REQUIRED)
include_directories($PCL_INCLUDE_DIRS)
link_directories($PCL_LIBRARY_DIRS)
add_definitions($PCL_DEFINITIONS)
add_executable (octree_search octree_search.cpp)
target_link_libraries (octree_search $PCL_LIBRARIES)
4、生成sln文件,准备编译
用cmake生成文件之后就可以开始编译了。
5、准备执行octree_search.exe,
执行过程中,可能会出现缺少dll的情况,像这样,
补全dll后,就可以正常执行exe文件了,
以上是关于3d激光雷达开发(八叉树)的主要内容,如果未能解决你的问题,请参考以下文章