YOLOV3 --BUG---No labels in D:yolov5 rain_data rain.cache. Can not train without labels.
Posted 浩瀚之水_csdn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了YOLOV3 --BUG---No labels in D:yolov5 rain_data rain.cache. Can not train without labels.相关的知识,希望对你有一定的参考价值。
采坑:
No labels in D:\\yolov5\\train_data\\train.cache. Can not train without labels.
参考:https://blog.csdn.net/qq_44787464/article/details/99736670
解决办法:
STEP1:
一定要按照这个顺序:
新建Annotations(存放voc格式的xml)
新建JPEGImages(存放训练的图片)
新建ImageSets ,labels (这两个文件为空)
将JPEGImages的图片复制到images中
STEP2:
在工程的根目录下添加makeTxt.py文件,并执行
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
STEP3:
在工程根目录下新建voc_label.py,并执行(注意!!!里面的标签名要改成自己训练标签,否则labels里面的txt文件为空)
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
################################这里修改为自己的标签名###############
classes = ["RBC"]#我们只是检测细胞,因此只有一个类别
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\\n' % (image_id))
convert_annotation(image_id)
list_file.close()
得到labels的具体内容以及data目录下的train.txt,test.txt,val.txt
创建自己yaml文件,在data目录下:
RBC.yaml
train: /home/zyc/anaconda3/envs/yolov3-master/data/train.txt
val: /home/zyc/anaconda3/envs/yolov3-master/data/val.txt
test: /home/zyc/anaconda3/envs/yolov3-master/data/test.txt
# number of classes
nc: 1
# class names
names: [ 'RBC' ]
最后在train.py
以上是关于YOLOV3 --BUG---No labels in D:yolov5 rain_data rain.cache. Can not train without labels.的主要内容,如果未能解决你的问题,请参考以下文章