面试官:请你谈谈ConcurrentHashMap
Posted androidstarjack
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了面试官:请你谈谈ConcurrentHashMap相关的知识,希望对你有一定的参考价值。
点击上方关注 “终端研发部”
设为“星标”,和你一起掌握更多数据库知识
没啥深入实践的理论系同学,在使用并发工具时,总是认为把HashMap改为ConcurrentHashMap,就完美解决并发了呀。或者使用写时复制的CopyOnWriteArrayList,性能更佳呀!技术言论虽然自由,但面对魔鬼面试官时,我们更在乎的是这些真的正确吗?
线程重用导致用户信息错乱
生产环境中,有时获取到的用户信息是别人的。查看代码后,发现是使用了ThreadLocal缓存获取到的用户信息。
ThreadLocal适用于变量在线程间隔离,而在方法或类间共享的场景。若用户信息的获取比较昂贵(比如从DB查询),则在ThreadLocal中缓存比较合适。问题来了,为什么有时会出现用户信息错乱?
案例
使用ThreadLocal存放一个Integer值,代表需要在线程中保存的用户信息,初始null。先从ThreadLocal获取一次值,然后把外部传入的参数设置到ThreadLocal中,模拟从当前上下文获取用户信息,随后再获取一次值,最后输出两次获得的值和线程名称。
固定思维认为,在设置用户信息前第一次获取的值始终是null,但要清楚程序运行在Tomcat,执行程序的线程是Tomcat的工作线程,其基于线程池。而线程池会重用固定线程,一旦线程重用,那么很可能首次从ThreadLocal获取的值是之前其他用户的请求遗留的值。这时,ThreadLocal中的用户信息就是其他用户的信息。
bug 重现
在配置文件设置Tomcat参数-工作线程池最大线程数设为1,这样始终是同一线程在处理请求:
server.tomcat.max-threads=1
先让用户1请求接口,第一、第二次获取到用户ID分别是null和1,符合预期
用户2请求接口,bug复现!第一、第二次获取到用户ID分别是1和2,显然第一次获取到了用户1的信息,因为Tomcat线程池重用了线程。两次请求线程都是同一线程:http-nio-45678-exec-1。
写业务代码时,首先要理解代码会跑在什么线程上:
Tomcat服务器下跑的业务代码,本就运行在一个多线程环境(否则接口也不可能支持这么高的并发),并不能认为没有显式开启多线程就不会有线程安全问题
线程创建较昂贵,所以Web服务器会使用线程池处理请求,线程会被重用。使用类似ThreadLocal工具存放数据时,需注意在代码运行完后,显式清空设置的数据。
解决方案
在finally代码块显式清除ThreadLocal中数据。即使新请求过来,使用了之前的线程,也不会获取到错误的用户信息。修正后代码:
ThreadLocal利用独占资源的解决线程安全问题,若就是要资源在线程间共享怎么办?就需要用到线程安全的容器。使用了线程安全的并发工具,并不代表解决了所有线程安全问题。
ThreadLocalRandom 可将其实例设置到静态变量,在多线程下重用吗?
current()的时候初始化一个初始化种子到线程,每次nextseed再使用之前的种子生成新的种子:
UNSAFE.putLong(t = Thread.currentThread(), SEED,
r = UNSAFE.getLong(t, SEED) + GAMMA);
如果你通过主线程调用一次current生成一个ThreadLocalRandom实例保存,那么其它线程来获取种子的时候必然取不到初始种子,必须是每一个线程自己用的时候初始化一个种子到线程。可以在nextSeed设置一个断点看看:
UNSAFE.getLong(Thread.currentThread(),SEED);
ConcurrentHashMap真的安全吗?
我们都知道ConcurrentHashMap是个线程安全的哈希表容器,但它仅保证提供的原子性读写操作线程安全。
案例
有个含900个元素的Map,现在再补充100个元素进去,这个补充操作由10个线程并发进行。开发人员误以为使用ConcurrentHashMap就不会有线程安全问题,于是不加思索地写出了下面的代码:在每一个线程的代码逻辑中先通过size方法拿到当前元素数量,计算ConcurrentHashMap目前还需要补充多少元素,并在日志中输出了这个值,然后通过putAll方法把缺少的元素添加进去。
为方便观察问题,我们输出了这个Map一开始和最后的元素个数。
访问接口
分析日志输出可得:
初始大小900符合预期,还需填充100个元素
worker13线程查询到当前需要填充的元素为49,还不是100的倍数
最后HashMap的总项目数是1549,也不符合填充满1000的预期
bug 分析
ConcurrentHashMap就像是一个大篮子,现在这个篮子里有900个桔子,我们期望把这个篮子装满1000个桔子,也就是再装100个桔子。有10个工人来干这件事儿,大家先后到岗后会计算还需要补多少个桔子进去,最后把桔子装入篮子。ConcurrentHashMap这篮子本身,可以确保多个工人在装东西进去时,不会相互影响干扰,但无法确保工人A看到还需要装100个桔子但是还未装时,工人B就看不到篮子中的桔子数量。你往这个篮子装100个桔子的操作不是原子性的,在别人看来可能会有一个瞬间篮子里有964个桔子,还需要补36个桔子。
ConcurrentHashMap对外提供能力的限制:
使用不代表对其的多个操作之间的状态一致,是没有其他线程在操作它的。如果需要确保需要手动加锁
诸如size、isEmpty和containsValue等聚合方法,在并发下可能会反映ConcurrentHashMap的中间状态。因此在并发情况下,这些方法的返回值只能用作参考,而不能用于流程控制。显然,利用size方法计算差异值,是一个流程控制
诸如putAll这样的聚合方法也不能确保原子性,在putAll的过程中去获取数据可能会获取到部分数据
解决方案
整段逻辑加锁:
只有一个线程查询到需补100个元素,其他9个线程查询到无需补,最后Map大小1000
既然使用ConcurrentHashMap还要全程加锁,还不如使用HashMap呢?不完全是这样。
ConcurrentHashMap提供了一些原子性的简单复合逻辑方法,用好这些方法就可以发挥其威力。这就引申出代码中常见的另一个问题:在使用一些类库提供的高级工具类时,开发人员可能还是按照旧的方式去使用这些新类,因为没有使用其真实特性,所以无法发挥其威力。
知己知彼,百战百胜
案例
使用Map来统计Key出现次数的场景。
使用ConcurrentHashMap来统计,Key的范围是10
使用最多10个并发,循环操作1000万次,每次操作累加随机的Key
如果Key不存在的话,首次设置值为1。
show me code:
有了上节经验,我们这直接锁住Map,再做
判断
读取现在的累计值
+1
保存累加后值
这段代码在功能上的确毫无没有问题,但却无法充分发挥ConcurrentHashMap的性能,优化后:
ConcurrentHashMap的原子性方法computeIfAbsent做复合逻辑操作,判断K是否存在V,若不存在,则把Lambda运行后结果存入Map作为V,即新创建一个LongAdder对象,最后返回V 因为computeIfAbsent返回的V是LongAdder,是个线程安全的累加器,可直接调用其increment累加。这样在确保线程安全的情况下达到极致性能,且代码行数骤减。
性能测试
使用StopWatch测试两段代码的性能,最后的断言判断Map中元素的个数及所有V的和是否符合预期来校验代码正确性
性能测试结果:比使用锁性能提升至少5倍。
computeIfAbsent高性能之道
Java的Unsafe实现的CAS。它在JVM层确保写入数据的原子性,比加锁效率高:
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v)
return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
所以不要以为只要用了ConcurrentHashMap并发工具就是高性能的高并发程序。
辨明 computeIfAbsent、putIfAbsent
当Key存在的时候,如果Value获取比较昂贵的话,putIfAbsent就白白浪费时间在获取这个昂贵的Value上(这个点特别注意)
Key不存在的时候,putIfAbsent返回null,小心空指针,而computeIfAbsent返回计算后的值
当Key不存在的时候,putIfAbsent允许put null进去,而computeIfAbsent不能,之后进行containsKey查询是有区别的(当然了,此条针对HashMap,ConcurrentHashMap不允许put null value进去)
CopyOnWriteArrayList 之殇
再比如一段简单的非 DB操作的业务逻辑,时间消耗却超出预期时间,在修改数据时操作本地缓存比回写DB慢许多。原来是有人使用了CopyOnWriteArrayList缓存大量数据,而该业务场景下数据变化又很频繁。CopyOnWriteArrayList虽然是一个线程安全版的ArrayList,但其每次修改数据时都会复制一份数据出来,所以只适用读多写少或无锁读场景。所以一旦使用CopyOnWriteArrayList,一定是因为场景适宜而非炫技。
CopyOnWriteArrayList V.S 普通加锁ArrayList读写性能
测试并发写性能
测试结果:高并发写,CopyOnWriteArray比同步ArrayList慢百倍
测试并发读性能
测试结果:高并发读(100万次get操作),CopyOnWriteArray比同步ArrayList快24倍
高并发写时,CopyOnWriteArrayList为何这么慢呢?因为其每次add时,都用Arrays.copyOf创建新数组,频繁add时内存申请释放性能消耗大。
总结
Don't !!!
不要只会用并发工具,而不熟悉线程原理
不要觉得用了并发工具,就怎么都线程安全
不熟悉并发工具的优化本质,就难以发挥其真正性能
不要不结合当前业务场景,就随意选用并发工具,可能导致系统性能更差
Do !!!
认真阅读官方文档,理解并发工具适用场景及其各API的用法,并自行测试验证,最后再使用 并发bug本就不易复现, 多自行进行性能压力测试
BAT等大厂Java面试经验总结
想获取 Java大厂面试题学习资料
扫下方二维码回复「BAT」就好了
回复 【加群】获取github掘金交流群
回复 【电子书】获取2020电子书教程
回复 【C】获取全套C语言学习知识手册
回复 【Java】获取java相关的视频教程和资料
回复 【爬虫】获取SpringCloud相关多的学习资料
回复 【Python】即可获得Python基础到进阶的学习教程
回复 【idea破解】即可获得intellij idea相关的破解教程
关注我gitHub掘金,每天发掘一篇好项目,学习技术不迷路!
如果喜欢就给个“在看”
以上是关于面试官:请你谈谈ConcurrentHashMap的主要内容,如果未能解决你的问题,请参考以下文章
大三实习面试腾讯被问到ConcurrentHashMap,我拿这份笔记狂怼面试官...
吊打面试官之ConcurrentHashMap和Hashtable
《吊打面试官》系列-ConcurrentHashMap & Hashtable(文末送书)