OpenCV 完整例程96. 谐波平均滤波器
Posted 小白YouCans
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV 完整例程96. 谐波平均滤波器相关的知识,希望对你有一定的参考价值。
【OpenCV 完整例程】96. 谐波平均滤波器
欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中
3. 仅噪声存在的空间滤波图像复原
当一幅图像中唯一存在的退化是噪声时,退化模型简化为:
g
(
x
,
y
)
=
f
(
x
,
y
)
+
η
(
x
,
y
)
G
(
u
,
v
)
=
F
(
u
,
v
)
+
N
(
u
,
v
)
g(x,y) = f(x,y) + \\eta(x,y) \\\\ G(u,v) = F(u,v) + N(u,v)
g(x,y)=f(x,y)+η(x,y)G(u,v)=F(u,v)+N(u,v)
当仅存在加性随机噪声时,可以采用空间滤波方法来估计原图像
f
(
x
,
y
)
f(x,y)
f(x,y),即对退化图像
g
(
x
,
y
)
g(x,y)
g(x,y) 去除噪声。
3.3 谐波平均滤波器(Harmonic mean filter)
谐波平均滤波器的复原图像
f
^
\\hatf
f^ 由下式给出:
f
^
(
x
,
y
)
=
m
n
∑
(
r
,
c
)
∈
S
x
y
1
/
g
(
r
,
c
)
\\hatf(x,y) = \\fracmn\\sum _(r,c) \\in Sxy 1/g(r,c)
f^(x,y)=∑(r,c)∈Sxy1/g(r,c)mn
谐波平均滤波器既能处理盐粒噪声(白色噪点),又能处理类似于高斯噪声的其他噪声,但不能处理胡椒噪声(黑色噪点)。
例程 9.10:谐波平均滤波器
# 9.10: 谐波平均滤波器 (Harmonic mean filter)
img = cv2.imread("../images/Fig0507b.tif", 0) # flags=0 读取为灰度图像
img_h = img.shape[0]
img_w = img.shape[1]
# 算术平均滤波 (Arithmentic mean filter)
kSize = (3, 3)
kernalMean = np.ones(kSize, np.float32) / (kSize[0]*kSize[1]) # 生成归一化盒式核
imgAriMean = cv2.filter2D(img, -1, kernalMean)
# 谐波平均滤波器 (Harmonic mean filter)
m, n = 3, 3
order = m * n
kernalMean = np.ones((m,n), np.float32) # 生成盒式核
hPad = int((m-1) / 2)
wPad = int((n-1) / 2)
imgPad = np.pad(img.copy(), ((hPad, m-hPad-1), (wPad, n-wPad-1)), mode="edge")
epsilon = 1e-8
imgHarMean = img.copy()
for i in range(hPad, img_h + hPad):
for j in range(wPad, img_w + wPad):
sumTemp = np.sum(1.0 / (imgPad[i-hPad:i+hPad+1, j-wPad:j+wPad+1] + epsilon))
imgHarMean[i-hPad][j-wPad] = order / sumTemp
plt.figure(figsize=(9, 6))
plt.subplot(131), plt.axis('off'), plt.title("Original")
plt.imshow(img, cmap='gray', vmin=0, vmax=255)
plt.subplot(132), plt.axis('off'), plt.title("Arithmentic mean filter")
plt.imshow(imgAriMean, cmap='gray', vmin=0, vmax=255)
plt.subplot(133), plt.axis('off'), plt.title("Harmonic mean filter")
plt.imshow(imgHarMean, cmap='gray', vmin=0, vmax=255)
plt.tight_layout()
plt.show()
(本节完)
版权声明:
youcans@xupt 原创作品,转载必须标注原文链接
Copyright 2021 youcans, XUPT
Crated:2022-2-1
欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中【OpenCV 完整例程】01. 图像的读取(cv2.imread)
【OpenCV 完整例程】02. 图像的保存(cv2.imwrite)
【OpenCV 完整例程】03. 图像的显示(cv2.imshow)
【OpenCV 完整例程】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 完整例程】05. 图像的属性(np.shape)
【OpenCV 完整例程】06. 像素的编辑(img.itemset)
【OpenCV 完整例程】07. 图像的创建(np.zeros)
【OpenCV 完整例程】08. 图像的复制(np.copy)
【OpenCV 完整例程】09. 图像的裁剪(cv2.selectROI)
【OpenCV 完整例程】10. 图像的拼接(np.hstack)
【OpenCV 完整例程】11. 图像通道的拆分(cv2.split)
【OpenCV 完整例程】12. 图像通道的合并(cv2.merge)
【OpenCV 完整例程】13. 图像的加法运算(cv2.add)
【OpenCV 完整例程】14. 图像与标量相加(cv2.add)
【OpenCV 完整例程】15. 图像的加权加法(cv2.addWeight)
【OpenCV 完整例程】16. 不同尺寸的图像加法
【OpenCV 完整例程】17. 两张图像的渐变切换
【OpenCV 完整例程】18. 图像的掩模加法
【OpenCV 完整例程】19. 图像的圆形遮罩
【OpenCV 完整例程】20. 图像的按位运算
【OpenCV 完整例程】21. 图像的叠加
【OpenCV 完整例程】22. 图像添加非中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】24. 图像的仿射变换
【OpenCV 完整例程】25. 图像的平移
【OpenCV 完整例程】26. 图像的旋转(以原点为中心)
【OpenCV 完整例程】27. 图像的旋转(以任意点为中心)
【OpenCV 完整例程】28. 图像的旋转(直角旋转)
【OpenCV 完整例程】29. 图像的翻转(cv2.flip)
【OpenCV 完整例程】30. 图像的缩放(cv2.resize)
【OpenCV 完整例程】31. 图像金字塔(cv2.pyrDown)
【OpenCV 完整例程】32. 图像的扭变(错切)
【OpenCV 完整例程】33. 图像的复合变换
【OpenCV 完整例程】34. 图像的投影变换
【OpenCV 完整例程】35. 图像的投影变换(边界填充)
【OpenCV 完整例程】36. 直角坐标与极坐标的转换
【OpenCV 完整例程】37. 图像的灰度化处理和二值化处理
【OpenCV 完整例程】38. 图像的反色变换(图像反转)
【OpenCV 完整例程】39. 图像灰度的线性变换
【OpenCV 完整例程】40. 图像分段线性灰度变换
【OpenCV 完整例程】41. 图像的灰度变换(灰度级分层)
【OpenCV 完整例程】42. 图像的灰度变换(比特平面分层)
【OpenCV 完整例程】43. 图像的灰度变换(对数变换)
【OpenCV 完整例程】44. 图像的灰度变换(伽马变换)
【OpenCV 完整例程】45. 图像的灰度直方图
【OpenCV 完整例程】46. 直方图均衡化
【OpenCV 完整例程】47. 图像增强—直方图匹配
【OpenCV 完整例程】48. 图像增强—彩色直方图匹配
【OpenCV 完整例程】49. 图像增强—局部直方图处理
【OpenCV 完整例程】50. 图像增强—直方图统计量图像增强
【OpenCV 完整例程】51. 图像增强—直方图反向追踪
【OpenCV 完整例程】52. 图像的相关与卷积运算
【OpenCV 完整例程】53. Scipy 实现图像二维卷积
【OpenCV 完整例程】54. OpenCV 实现图像二维卷积
【OpenCV 完整例程】55. 可分离卷积核
【OpenCV 完整例程】56. 低通盒式滤波器
【OpenCV 完整例程】57. 低通高斯滤波器
【OpenCV 完整例程】58. 非线性滤波—中值滤波
【OpenCV 完整例程】59. 非线性滤波—双边滤波
【OpenCV 完整例程】60. 非线性滤波—联合双边滤波
【OpenCV 完整例程】61. 导向滤波(Guided filter)
【OpenCV 完整例程】62. 图像锐化——钝化掩蔽
【OpenCV 完整例程】63. 图像锐化——Laplacian 算子
【OpenCV 完整例程】64. 图像锐化——Sobel 算子
【OpenCV 完整例程】65. 图像锐化——Scharr 算子
【OpenCV 完整例程】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 完整例程】67. 空间域图像增强的综合应用
【OpenCV 完整例程】68. 空间域图像增强的综合应用
【OpenCV 完整例程】69. 连续非周期信号的傅立叶系数
【OpenCV 完整例程】70. 一维连续函数的傅里叶变换
【OpenCV 完整例程】71. 连续函数的取样
【OpenCV 完整例程】72. 一维离散傅里叶变换
【OpenCV 完整例程】73. 二维连续傅里叶变换
【OpenCV 完整例程】74. 图像的抗混叠
【OpenCV 完整例程】75. Numpy 实现图像傅里叶变换
【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换
【OpenCV 完整例程】77. OpenCV 实现快速傅里叶变换
【OpenCV 完整例程】78. 频率域图像滤波基础
【OpenCV 完整例程】79. 频率域图像滤波的基本步骤
【OpenCV 完整例程】80. 频率域图像滤波详细步骤
【OpenCV 完整例程】81. 频率域高斯低通滤波器
【OpenCV 完整例程】82. 频率域巴特沃斯低通滤波器
【OpenCV 完整例程】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 完整例程】84. 由低通滤波器得到高通滤波器
【OpenCV 完整例程】85. 频率域高通滤波器的应用
【OpenCV 完整例程】86. 频率域滤波应用:指纹图像处理
【OpenCV 完整例程】87. 频率域钝化掩蔽
【OpenCV 完整例程】88. 频率域拉普拉斯高通滤波
【OpenCV 完整例程】89. 带阻滤波器的传递函数
【OpenCV 完整例程】90. 频率域陷波滤波器
【OpenCV 完整例程】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【OpenCV 完整例程】92. 指数噪声、均匀噪声、椒盐噪声
【OpenCV 完整例程】93. 噪声模型的直方图
【OpenCV 完整例程】94. 算术平均滤波器
【OpenCV 完整例程】95. 几何均值滤波器
【OpenCV 完整例程】96. 谐波平均滤波器
以上是关于OpenCV 完整例程96. 谐波平均滤波器的主要内容,如果未能解决你的问题,请参考以下文章
OpenCV 完整例程63. 图像锐化——Laplacian 算子