在这冷漠的世界里光光哭哭

Posted solemntee

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在这冷漠的世界里光光哭哭相关的知识,希望对你有一定的参考价值。


对于一个子串 a b c abc abc,可以容易的求出前 i i i位子序列个数,记为 d p [ i ] [ a ] [ b ] [ c ] dp[i][a][b][c] dp[i][a][b][c]
对于一个子串 a b ab ab,可以容易的求出前 i i i位子序列个数,记为 d p [ i ] [ a ] [ b ] dp[i][a][b] dp[i][a][b]
对于一个子串 a a a,可以容易的求出前 i i i位子序列个数,记为 d p [ i ] [ a ] dp[i][a] dp[i][a]

首先考虑 d p [ r ] [ a ] [ b ] [ c ] − d p [ l − 1 ] [ a ] [ b ] [ c ] dp[r][a][b][c]-dp[l-1][a][b][c] dp[r][a][b][c]dp[l1][a][b][c],这样得到的序列数量多算了两类。

第一类是 b c bc bc [ l , r ] [l,r] [l,r]内, a a a [ 1 , l − 1 ] [1,l-1] [1,l1]
[ l , r ] [l,r] [l,r]内的 b c bc bc序列的数量为 d p [ r ] [ a ] [ b ] − d p [ l − 1 ] [ a ] [ b ] − ( d p [ r ] [ b ] − d p [ l − 1 ] [ b ] ) × d p [ l − 1 ] [ a ] dp[r][a][b]-dp[l-1][a][b]-(dp[r][b]-dp[l-1][b])\\times dp[l-1][a] dp[r][a][b]dp[l1][a][b](dp[r][b]dp[l1][b])×dp[l1][a]
第一类的数量为
( d p [ r ] [ a ] [ b ] − d p [ l − 1 ] [ a ] [ b ] − ( d p [ r ] [ b ] − d p [ l − 1 ] [ b ] ) × d p [ l − 1 ] [ a ] ) × d p [ l − 1 ] [ a ] (dp[r][a][b]-dp[l-1][a][b]-(dp[r][b]-dp[l-1][b])\\times dp[l-1][a])\\times dp[l-1][a] (dp[r][a][b]dp[l1][a][b](dp[r][b]dp[l1][b])×dp[l1][a])×dp[l1][a]
第二类是 c c c [ l , r ] [l,r] [l,r]内, a b ab ab [ 1 , l − 1 ] [1,l-1] [1,l1]
数量为
( d p [ c ] [ r ] − d p [ c ] [ l − 1 ] ) × d p [ a ] [ b ] [ l − 1 ] (dp[c][r]-dp[c][l-1])\\times dp[a][b][l-1] (dp[c][r]dp[c][l1])×dp[a][b][l1]
最后答案为
d p [ r ] [ a ] [ b ] [ c ] − d p [ l − 1 ] [ a ] [ b ] [ c ] − ( ( d p [ r ] [ a ] [ b ] − d p [ l − 1 ] [ a ] [ b ] − ( d p [ r ] [ b ] − d p [ l − 1 ] [ b ] ) × d p [ l − 1 ] [ a ] ) × d p [ l − 1 ] [ a ] ) − ( ( d p [ c ] [ r ] − d p [ c ] [ l − 1 ] ) × d p [ a ] [ b ] [ l − 1 ] ) dp[r][a][b][c]-dp[l-1][a][b][c]-((dp[r][a][b]-dp[l-1][a][b]-(dp[r][b]-dp[l-1][b])\\times dp[l-1][a])\\times dp[l-1][a])-((dp[c][r]-dp[c][l-1])\\times dp[a][b][l-1]) dp[r][a][b][c]dp[l1][a][b][c]((dp[r][a][b]dp[l1][a][b](dp[r][b]dp[l1][b])×dp[l1][a])×dp[l1][a])((dp[c][r]dp[c][l1])×dp[a][b][l1])
注意到 d p [ n ] [ a ] [ b ] [ c ] dp[n][a][b][c] dp[n][a][b][c]可以用 O ( n × 2 6 2 ) O(n\\times26^2) O(n×262)的复杂度完成(利用末端点优化掉一维),我们可以离线每组答案的询问 O ( n × 2 6 2 + q × C ) O(n\\times26^2+q\\times C) O(n×262+q×C)完成

#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct node

    int pos;
    ll val;
;
struct query

    int len,pos,id,f,a,b,c;
;
vector<query>v[80005];

ll Q[500005][8];

ll presum[26][26][26];
ll dp[26][26][3];
char ss[4];
char s[80005];
int main()

    int n,q;
    scanf("%d%d",&n,&q);
    scanf("%s",s+1);
    for(int i=1;i<=q;i++)
    
//        printf("q=%d\\n",q);
        int l,r;
        scanf("%d%d",&l,&r);
        scanf("%s",ss+1);
//        printf("q=%d\\n",q);
        /// 长度为3的前缀和
        v[l-1].push_back(3,5,i,-1,ss[1]-'a',ss[2]-'a',ss[3]-'a');
        v[r].push_back(3,5,i,1,ss[1]-'a',ss[2]-'a',ss[3]-'a');
        ///前面2 后面1

        v[l-1].push_back(2,1,i,1,ss[1]-'a',ss[2]-'a',ss[3]-'a');

        v[r].push_back(1,2,i,1,ss[3]-'a',0,0);
        v[l-1].push_back(1,2,i,-1,ss[3]-'a',0,0);

        ///前面1 后面2

        v[l-1].push_back(1,3,i,1,ss[1]-'a',ss[2]-'a',ss[3]-'a');

        v[r].push_back(2,4,i,1,ss[2]-'a',ss[3]-'a',0);
        v[l-1].push_back(2,4,i,-1,ss[2]-'a',ss[3]-'a',0);

        v[r].push_back(1,6,i,12022牛客寒假算法基础集训营 4 全部题解

2022牛客寒假算法基础集训营 4 全部题解

2022牛客寒假算法基础集训营4 ABCDEFGHIJKL

Python基础第十天——yield的表达式形式的应用面向过程编程内置函数

[听听音乐]勇敢勇敢

30分钟彻底弄懂flex布局