[Python从零到壹] 四十二.图像处理基础篇之图像金字塔向上取样和向下取样
Posted Eastmount
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Python从零到壹] 四十二.图像处理基础篇之图像金字塔向上取样和向下取样相关的知识,希望对你有一定的参考价值。
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。
该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。
上一篇文章介绍图像采样处理。这篇文章将详细讲解图像金字塔,包括图像向上取样和向下取样。希望文章对您有所帮助,如果有不足之处,还请海涵。
文章目录
下载地址:
前文赏析:
第一部分 基础语法
- [Python从零到壹] 一.为什么我们要学Python及基础语法详解
- [Python从零到壹] 二.语法基础之条件语句、循环语句和函数
- [Python从零到壹] 三.语法基础之文件操作、CSV文件读写及面向对象
第二部分 网络爬虫
- [Python从零到壹] 四.网络爬虫之入门基础及正则表达式抓取博客案例
- [Python从零到壹] 五.网络爬虫之BeautifulSoup基础语法万字详解
- [Python从零到壹] 六.网络爬虫之BeautifulSoup爬取豆瓣TOP250电影详解
- [Python从零到壹] 七.网络爬虫之Requests爬取豆瓣电影TOP250及CSV存储
- [Python从零到壹] 八.数据库之MySQL基础知识及操作万字详解
- [Python从零到壹] 九.网络爬虫之Selenium基础技术万字详解(定位元素、常用方法、键盘鼠标操作)
- [Python从零到壹] 十.网络爬虫之Selenium爬取在线百科知识万字详解(NLP语料构造必备技能)
第三部分 数据分析和机器学习
- [Python从零到壹] 十一.数据分析之Numpy、Pandas、Matplotlib和Sklearn入门知识万字详解(1)
- [Python从零到壹] 十二.机器学习之回归分析万字总结全网首发(线性回归、多项式回归、逻辑回归)
- [Python从零到壹] 十三.机器学习之聚类分析万字总结全网首发(K-Means、BIRCH、层次聚类、树状聚类)
- [Python从零到壹] 十四.机器学习之分类算法三万字总结全网首发(决策树、KNN、SVM、分类算法对比)
- [Python从零到壹] 十五.文本挖掘之数据预处理、Jieba工具和文本聚类万字详解
- [Python从零到壹] 十六.文本挖掘之词云热点与LDA主题分布分析万字详解
- [Python从零到壹] 十七.可视化分析之Matplotlib、Pandas、Echarts入门万字详解
- [Python从零到壹] 十八.可视化分析之Basemap地图包入门详解
- [Python从零到壹] 十九.可视化分析之热力图和箱图绘制及应用详解
- [Python从零到壹] 二十.可视化分析之Seaborn绘图万字详解
- [Python从零到壹] 二十一.可视化分析之Pyechart绘图万字详解
- [Python从零到壹] 二十二.可视化分析之OpenGL绘图万字详解
- [Python从零到壹] 二十三.十大机器学习算法之决策树分类分析详解(1)
- [Python从零到壹] 二十四.十大机器学习算法之KMeans聚类分析详解(2)
- [Python从零到壹] 二十五.十大机器学习算法之KNN算法及图像分类详解(3)
- [Python从零到壹] 二十六.十大机器学习算法之朴素贝叶斯算法及文本分类详解(4)
- [Python从零到壹] 二十七.十大机器学习算法之线性回归算法分析详解(5)
- [Python从零到壹] 二十八.十大机器学习算法之SVM算法分析详解(6)
- [Python从零到壹] 二十九.十大机器学习算法之随机森林算法分析详解(7)
- [Python从零到壹] 三十.十大机器学习算法之逻辑回归算法及恶意请求检测应用详解(8)
- [Python从零到壹] 三十一.十大机器学习算法之Boosting和AdaBoost应用详解(9)
- [Python从零到壹] 三十二.十大机器学习算法之层次聚类和树状图聚类应用详解(10)
第四部分 Python图像处理基础
- [Python从零到壹] 三十三.图像处理基础篇之什么是图像处理和OpenCV配置
- [Python从零到壹] 三十四.OpenCV入门详解——显示读取修改及保存图像
- [Python从零到壹] 三十五.图像处理基础篇之OpenCV绘制各类几何图形
- [Python从零到壹] 三十六.图像处理基础篇之图像算术与逻辑运算详解
- [Python从零到壹] 三十七.图像处理基础篇之图像融合处理和ROI区域绘制
- [Python从零到壹] 三十八.图像处理基础篇之图像几何变换(平移缩放旋转)
- [Python从零到壹] 三十九.图像处理基础篇之图像几何变换(镜像仿射透视)
- [Python从零到壹] 四十.图像处理基础篇之图像量化处理
- [Python从零到壹] 四十一.图像处理基础篇之图像采样处理
- [Python从零到壹] 四十二.图像处理基础篇之图像金字塔向上取样和向下取样
第五部分 Python图像运算和图像增强
第六部分 Python图像识别和图像处理经典案例
第七部分 NLP与文本挖掘
第八部分 人工智能入门知识
第九部分 网络攻防与AI安全
第十部分 知识图谱构建实战
扩展部分 人工智能高级案例
作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。
一.图像金字塔原理
上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数。
图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。如图10-1所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低[1-2]。
生成图像金字塔主要包括两种方式:
- 向下取样
- 向上取样
在图中,将图像G0转换为G1、G2、G3,图像分辨率不断降低的过程称为向下取样;将G3转换为G2、G1、G0,图像分辨率不断增大的过程称为向上取样。
二.图像向上取样
在图像向上取样是由小图像不断放图像的过程。它将图像在每个方向上扩大为原图像的2倍,新增的行和列均用0来填充,并使用与“向下取样”相同的卷积核乘以4,再与放大后的图像进行卷积运算,以获得“新增像素”的新值。如图10-2所示,它在原始像素45、123、89、149之间各新增了一行和一列值为0的像素。
在OpenCV中,向上取样使用的函数为pyrUp(),其原型如下所示:
- dst = pyrUp(src[, dst[, dstsize[, borderType]]])
– src表示输入图像,
– dst表示输出图像,和输入图像具有一样的尺寸和类型
– dstsize表示输出图像的大小,默认值为Size()
– borderType表示像素外推方法,详见cv::bordertypes
向上取样的代码如下所示:
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena-small.png')
#图像向上取样
r = cv2.pyrUp(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp', r)
cv2.waitKey()
cv2.destroyAllWindows()
输出结果如图10-3所示,它将原始图像扩大为原图像的四倍。
多次向上取样的代码如下。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena-small.png')
#图像向上取样
r1 = cv2.pyrUp(img)
r2 = cv2.pyrUp(r1)
r3 = cv2.pyrUp(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp1', r1)
cv2.imshow('PyrUp2', r2)
cv2.imshow('PyrUp3', r3)
cv2.waitKey()
cv2.destroyAllWindows()
输出结果如图10-4所示,每次向上取样均为上次图像的四倍,但图像的清晰度会降低。
三.图像向下取样
在图像向下取样中,使用最多的是高斯金字塔。它将对图像Gi进行高斯核卷积,并删除原图中所有的偶数行和列,最终缩小图像。其中,高斯核卷积运算就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值(权重不同)经过加权平均后得到。常见的3×3和5×5高斯核如下:
高斯核卷积让临近中心的像素点具有更高的重要度,对周围像素计算加权平均值,如图10-5所示,其中心位置权重最高为0.4。
在OpenCV中,向下取样使用的函数为pyrDown(),其原型如下所示:
- dst = pyrDown(src[, dst[, dstsize[, borderType]]])
– src表示输入图像,
– dst表示输出图像,和输入图像具有一样的尺寸和类型
– dstsize表示输出图像的大小,默认值为Size()
– borderType表示像素外推方法,详见cv::bordertypes
向下取样的代码如下所示:
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r = cv2.pyrDown(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown', r)
cv2.waitKey()
cv2.destroyAllWindows()
输出结果如图10-6所示,它将原始图像压缩成原图的四分之一。
多次向下取样的代码如下。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r1 = cv2.pyrDown(img)
r2 = cv2.pyrDown(r1)
r3 = cv2.pyrDown(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown1', r1)
cv2.imshow('PyrDown2', r2)
cv2.imshow('PyrDown3', r3)
cv2.waitKey()
cv2.destroyAllWindows()
输出结果如图10-7所示,每次向下取样均为上次的四分之一,并且图像的清晰度会降低。
四.总结
本文主要讲解图像金字塔处理,包括图像向上取样和向下取样。需要注意,向上取样放大后的图像比原始图像要模糊,而每次向下取样会删除偶数行和列,它会不停地丢失图像的信息。此外,向上采样和向下采样不是互逆的操作,经过两种操作后,是无法恢复原始图像的。
写到这里,第一部分图像处理基础知识介绍完毕。该部分包括10篇文章,分别是图像处理基础知识和OpenCV配置;OpenCV入门详解(显示读取修改及保存图像);OpenCV绘制各类几何图形;图像算术与逻辑运算详解;图像融合处理和ROI区域绘制;图像几何变换(平移、缩放、旋转、镜像、仿射、透视);图像量化处理;图像采样处理和图像金字塔处理。这些基础知识是我们开启图像处理系列分享的基础,希望大家一定要主动完成文章中的所有代码。同时,如果您是一名初学者或学生,可以尝试学习该系列文章,既能提升您的编程兴趣,又能帮助您完成实战性的技能提升。接下来我们进入第二部分——图像运算和图像增强,进一步深入介绍图像处理相关知识点。
最近日更,为了感谢读者。同时感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:
祝大家新年快乐,虎年大吉,阖家幸福,万事如意,小珞珞给大家拜年了。亲情是真的很美,很治愈。希望小珞珞和他妈妈能开心每一天,全家人身体健康。小珞珞这小样子可爱极了,爱你们喔!
(By:娜璋之家 Eastmount 2022-02-10 夜于贵阳 https://blog.csdn.net/Eastmount )
参考文献:
- [1]冈萨雷斯著. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
- [2]Eastmount. [Python图像处理] 三十.图像量化及采样处理万字详细总结[EB/OL]. (2020-11-10). https://blog.csdn.net/Eastmount/article/details/109605161.
- [3]Eastmount. [数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解[EB/OL]. (2015-05-28). https://blog.csdn.net/eastmount/article/details/46010637.
以上是关于[Python从零到壹] 四十二.图像处理基础篇之图像金字塔向上取样和向下取样的主要内容,如果未能解决你的问题,请参考以下文章
[Python从零到壹] 四十六.图像增强及运算篇之图像阈值化处理
[Python从零到壹] 四十四.图像增强及运算篇之图像灰度线性变换详解
[Python从零到壹] 四十七.图像增强及运算篇之腐蚀和膨胀详解
[Python从零到壹] 四十三.图像增强及运算篇之图像点运算和图像灰度化处理