Java客户端访问Kafka

Posted java_wxid

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java客户端访问Kafka相关的知识,希望对你有一定的参考价值。

我是🌟廖志伟🌟,一名🌕Java开发工程师🌕、📝Java领域优质创作者📝、🎉CSDN博客专家🎉、🌹幕后大佬社区创始人🌹。拥有多年一线研发经验,研究过各种常见框架中间件的底层源码,对于大型分布式微服务、三高架构(高性能高并发高可用)有过实践架构经验。

🍊博主:java_wxid
🍊博主:Java廖志伟
🍊社区:幕后大佬



本文内容:

Java客户端访问Kafka


引入maven依赖

<dependency>
   <groupId>org.apache.kafka</groupId>
   <artifactId>kafka-clients</artifactId>
   <version>2.4.1</version>
</dependency>

消息发送端代码

package com.sky.kafka.kafkaDemo;

import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

public class MsgProducer 

    private final static String TOPIC_NAME = "my-replicated-topic";

    public static void main(String[] args) throws InterruptedException, ExecutionException 
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");
         /*
         发出消息持久化机制参数
        (1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
        (2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一
             条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
        (3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证
            只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
         */
        /*props.put(ProducerConfig.ACKS_CONFIG, "1");
         *//*
        发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在
        接收者那边做好消息接收的幂等性处理
        *//*
        props.put(ProducerConfig.RETRIES_CONFIG, 3);
        //重试间隔设置
        props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
        //设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        *//*
        kafka本地线程会从缓冲区取数据,批量发送到broker,
        设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
        *//*
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        *//*
        默认值是0,意思就是消息必须立即被发送,但这样会影响性能
        一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去
        如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
        *//*
        props.put(ProducerConfig.LINGER_MS_CONFIG, 10);*/
        //把发送的key从字符串序列化为字节数组
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //把发送消息value从字符串序列化为字节数组
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        Producer<String, String> producer = new KafkaProducer<String, String>(props);

        int msgNum = 5;
        final CountDownLatch countDownLatch = new CountDownLatch(msgNum);
        for (int i = 1; i <= msgNum; i++) 
            Order order = new Order(i, 100 + i, 1, 1000.00);
            //指定发送分区
            /*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
                    , 0, order.getOrderId().toString(), JSON.toJSONString(order));*/
            //未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
            ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
                    , order.getOrderId().toString(), JSON.toJSONString(order));

            //等待消息发送成功的同步阻塞方法
            /*RecordMetadata metadata = producer.send(producerRecord).get();
            System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
                    + metadata.partition() + "|offset-" + metadata.offset());*/

            //异步回调方式发送消息
            producer.send(producerRecord, new Callback() 
                public void onCompletion(RecordMetadata metadata, Exception exception) 
                    if (exception != null) 
                        System.err.println("发送消息失败:" + exception.getStackTrace());

                    
                    if (metadata != null) 
                        System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
                                + metadata.partition() + "|offset-" + metadata.offset());
                    
                    countDownLatch.countDown();
                
            );

            //送积分 TODO

        

        countDownLatch.await(5, TimeUnit.SECONDS);
        producer.close();
    

消息接收端代码

package com.sky.kafka.kafkaDemo;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class MsgConsumer 
    private final static String TOPIC_NAME = "my-replicated-topic";
    private final static String CONSUMER_GROUP_NAME = "testGroup";

    public static void main(String[] args) 
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "106.14.132.94:9092,106.14.132.94:9093,106.14.132.94:9094");
        // 消费分组名
        props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
        // 是否自动提交offset,默认就是true
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
        // 自动提交offset的间隔时间
        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
        //props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
        /*
        当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费
        latest(默认) :只消费自己启动之后发送到主题的消息
        earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
        */
        //props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
      /*
      consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将
      rebalance方案下发给consumer,这个时间可以稍微短一点
      */
        props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
        /*
        服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,
        对应的Partition也会被重新分配给其他consumer,默认是10秒
        */
        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
        //一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
        /*
        如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
        会将其踢出消费组,将分区分配给别的consumer消费
        */
        props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);

        consumer.subscribe(Arrays.asList(TOPIC_NAME));
        // 消费指定分区
        //consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));

        //消息回溯消费
        /*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
        consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*/

        //指定offset消费
        /*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
        consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*/

        //从指定时间点开始消费
        /*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
        //从1小时前开始消费
        long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
        Map<TopicPartition, Long> map = new HashMap<>();
        for (PartitionInfo par : topicPartitions) 
            map.put(new TopicPartition(topicName, par.partition()), fetchDataTime);
        
        Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
        for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) 
            TopicPartition key = entry.getKey();
            OffsetAndTimestamp value = entry.getValue();
            if (key == null || value == null) continue;
            Long offset = value.offset();
            System.out.println("partition-" + key.partition() + "|offset-" + offset);
            System.out.println();
            //根据消费里的timestamp确定offset
            if (value != null) 
                consumer.assign(Arrays.asList(key));
                consumer.seek(key, offset);
            
        */

        while (true) 
            /*
             * poll() API 是拉取消息的长轮询
             */
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> record : records) 
                System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
                        record.offset(), record.key(), record.value());
            

            /*if (records.count() > 0) 
                // 手动同步提交offset,当前线程会阻塞直到offset提交成功
                // 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
                consumer.commitSync();

                // 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
                consumer.commitAsync(new OffsetCommitCallback() 
                    @Override
                    public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) 
                        if (exception != null) 
                            System.err.println("Commit failed for " + offsets);
                            System.err.println("Commit failed exception: " + exception.getStackTrace());
                        
                    
                );

            */
        
    


总结

以上就是今天要讲的内容,还希望各位读者大大能够在评论区积极参与讨论,给文章提出一些宝贵的意见或者建议📝,合理的内容,我会采纳更新博文,重新分享给大家。

🙏四连 关注🔎点赞👍收藏⭐️留言📝

感谢大家的支持,用心写博文分享给大家,你的支持(🔎点赞👍收藏⭐️留言📝)是对我创作的最大帮助。
🍊微信公众号:南北踏尘
🍊主页地址:java_wxid
🍊社区地址:幕后大佬

给读者大大的话

我本身是一个很普通的程序员,放在人堆里,除了与生俱来的🌹盛世美颜🌹、所剩不多的发量,就剩下180的大高个了。就是我这样的一个人,默默坚持写博文也有好多年了,有句老话说的好,🌕牛逼之前都是傻逼式的坚持🌕。希望自己可以通过大量的作品,时间的积累,个人魅力、运气和时机,可以打造属于自己的🌟技术影响力🌟。同时也希望自己可以成为一个🎄懂技术🎄,🎄懂业务🎄,🎄懂管理🎄的综合型人才,作为项目架构路线的总设计师,掌控全局的🌕团队大脑🌕,技术团队中的🍊绝对核心🍊是我未来几年不断前进的目标。


提示:以下都是资源分享,求个一键三连。

面试资料

福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。
点击:面试资料
提取码:2021

200套PPT模板

福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。
点击:200套PPT模板
提取码:2021

提问的智慧

福利大放送,🎉欢迎关注🔎点赞👍收藏⭐️留言📝,拜托了🙏,这对我真的很重要。
点击:提问的智慧
提取码:2021

Java开发学习路线

名称链接
JavaSE点击: JavaSE
mysql专栏点击: MySQL专栏
JDBC专栏点击: JDBC专栏
MyBatis专栏点击: MyBatis专栏
Web专栏点击: Web专栏
Spring专栏点击: Spring专栏
SpringMVC专栏点击: SpringMVC专栏
SpringBoot专栏点击: SpringBoot专栏
SpringCould专栏点击: SpringCould专栏
Redis专栏点击: Redis专栏
Linux专栏点击: Linux专栏
Maven3专栏点击: Maven3专栏
Spring Security5专栏点击: Spring Security5专栏
更多专栏更多专栏,请到 java_wxid主页 查看

P5学习路线图
P6学习路线图
P7学习路线图
P8学习路线图

以上四张图详细介绍了作为Java开发工作者所需要具备的知识技能,同学们学废了嘛,有想法系统学习的同学可以私聊我,🎉欢迎关注🔎点赞👍收藏⭐️留言📝。
🍊博主:java_wxid
🍊博主:Java廖志伟
🍊社区:幕后大佬

以上是关于Java客户端访问Kafka的主要内容,如果未能解决你的问题,请参考以下文章

Java客户端访问Kafka

Kafka Kerberos客户端访问

java 连接Kafka报错java.nio.channels.ClosedChannelExcep

Kafka 客户端TimeoutException问题之坑

python confluent kafka客户端-无法使用SSL访问GKE上的Kafka

Kafka集群常见的跨网络访问详解