Pytorch children()modules()named_children()named_modules()named_parameters()parameters()使用说明

Posted 洪流之源

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pytorch children()modules()named_children()named_modules()named_parameters()parameters()使用说明相关的知识,希望对你有一定的参考价值。

children():返回包含直接子模块的迭代器
modules():(递归)返回包含所有子模块(直接、间接)的迭代器
named_children() :返回包含直接子模块的迭代器,同时产生模块的名称以及模块本身
named_modules():返回包含所有子模块(直接、间接)的迭代器,同时产生模块的名称以及模块本身
named_parameters():返回模块参数上的迭代器,产生参数的名称和参数本身
parameters(): 返回模块参数上的迭代器,不包括名称
import torch.nn as nn


class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

if __name__ == '__main__':
    
    model = AlexNet()

    print('model children: ')
    for module in model.children():
        print(module)
    
    print('model modules: ')
    for module in model.modules():
        print(module)

    print('model named children: ')
    for name, module in model.named_children():
        print('name: , module: '.format(name, module))
    
    print('model named modules: ')
    for name, module in  model.named_modules():
        print('name: , module: '.format(name, module))

    print('model named parameters: ')
    for name, parameter in model.named_parameters():
         print('name: , parameter: '.format(name, parameter))

    print('parameters: ')
    for parameter in model.parameters():
        print('parameter: '.format(parameter))

 

以上是关于Pytorch children()modules()named_children()named_modules()named_parameters()parameters()使用说明的主要内容,如果未能解决你的问题,请参考以下文章

Module.modules()和Module.children()

Pytorch 里面model部分属性简析

PyTorch学习笔记 4. 定义神经网络

PyTorch学习笔记 4. 定义神经网络

pytorch 参数初始化

pytorch 修改预训练model