标签数据开发

Posted 果汁华

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了标签数据开发相关的知识,希望对你有一定的参考价值。

一、统计类标签开发

1、近30日购买行为标签案例

2、最新来访标签案例

二、规则类标签

1、用户价值类案例

重要价值、重要保持、一般价值、一般发展

2、用户活跃度标签案例

高活跃、中活跃、低活跃、流失等标签。

三、挖掘类标签

1、案例背景

文章类别划分

2、特征选取及开发

标注:人工对一批文档进行精准分类,作为训练集样本;

训练:计算机从标注好的文档集中挖掘出能够有效分类的规则,生成分类器;

分类:将生成的分类器应用在待分类的文档集中,从而获得文档的分类结果

3、文本分词处理

4、数据结构处理

5、文本TF-IDF权重

6、朴素贝叶斯分类

四、流式计算标签开发

在做实时订单分析,或者给首次登录App的新人用户弹窗推送、发放红包,实时分析用户所处场景并进行推送有广泛的应用。

1、流式标签建模框架

Spark Streaming 是Spark Core API的扩展,支持实时数据流的处理,并且有可扩展性、高吞吐量、容错的特点。数据可以从Kafka、Flume等多个来源获取,可以使用map、reduce、window等多个高级函数对业务逻辑进行处理。

2、kafka简介

kafka的核心功能是作为分布式消息中间件。Kafka集群由多个Broker server组成,其中,消息发送者称为Producer;消息消费者称为Cousumer; broker 是消息处理的节点,多个broker组成Kafka集群;Topic是数据主题,用来区分不同的业务系统,消费者通过订阅不同的Topic来消费不同主题数据,每个topic又分为多个Partition,Partition是Topic的分组,每个Partition都是一个有序队列;offset用于定位消费者在每个Partition中消费的位置。

3、Spark Streaming集成kafka

Spark Streaming可以通过Receiver和Direct两种模式来集成Kafka。

在Receiver模式下,Spark Streaming作为Consumer拉取Kafka中的数据,将获取的数据存储在Executeor内存中。可能因为数据量过大而造成内存溢出,所以启用预写日志机制(Write Ahead Log)将溢出部分写入到HDFS中。

在Direct模式下,Spark Streaming 直接读取Kafka的topic中的所有Partition,获取offset。Spark Streaming中有一个InputStream,这个Dsteam的每一个分区对应着Kafka中需要消费的Topic的每一个分区,并且从Kafka中读取数据。在Direct模式下,是Spark Steaming自己追踪消费的Offset, 消除了与ZooKeeper不一致情况,处理和输出过程符合Exactly-once模式。

Spark Streaming对Kafka的集成有两个版本,一个是0.8版本,另
一个是0.10以上的版本,0.10以后只保留Direct模式。

4、标签开发及工程化

实时类标签的处理流程主要包括4个部分:
  • 读取数据源,这里讲解消费Kafka中的数据
  • 解析数据,
  • 将解析的数据存储到指定位置
  • 存储消费的Offset,Direct模式下需要保存消费到的位置

五、用户特征库开发

六、标签权重计算

七、标签相似度计算

八、组合标签计算

九、数据服务层开发

十、Graphx图计算用户

以上是关于标签数据开发的主要内容,如果未能解决你的问题,请参考以下文章

标签数据开发

JSTL标签库---SUN公司开发的标签库

web调用IC卡读卡器开发第七章--NFC标签NDEF数据

窥探 Script 标签(步入现代 Web 开发的魔法世界)

使用Python进行网站页面开发——HTML

企业级360用户画像