成为深度学习专家的七个步骤
Posted Lyndon_zheng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了成为深度学习专家的七个步骤相关的知识,希望对你有一定的参考价值。
PS:早上看到的一篇不错的原文,因为自己也正在进行这些学习研究,一路走来,觉得总结不错。本想要翻译出来的,发现有人这么做了,就直接转过来,一方面是给自己更多资源,另一方面是希望分享给更多的人。
原文作者:Ankit Agarwal
译者:Angulia Chao
原文链接: https://www.linkedin.com/pulse/7-steps-becoming-deep-learning-expert-ankit-agarwal
Apologies for using Buzz feed like click bait as the title, but it worked and got you to reading this.
One of the frequent questions we get about our work is - "Where to start learning Deep Learning?” Lot of courses and tutorials are available freely online, but it gets overwhelming for the uninitiated. We have curated a few resources below which may help you begin your trip down the Deep Learning rabbit hole.
1. The first step is to understand Machine learning, the best resource for which is Andrew Ngs (Ex-Google, Stanford, Baidu), an online course at coursera. Going through the lectures are enough to understand the basics, but assignments take your understanding to another level.
2. Next step is to develop intuition for Neural Networks. So go forth, write your first Neural Network and play with it.
3. Understanding Neural networks are important, but simple Neural Networks not sufficient to solve the most interesting problems. A variation - Convolution Neural Networks work really well for visual tasks. Standord lecture notes and slides on the same are here:CS231n Convolutional Neural Networks for Visual Recognition(notes), and CS231n: Convolutional Neural Networks for Visual Recognition (lecture slides). Also here and here are two great videos on CNNs.
4. Next step is to get following for running your first CNN on your own PC.
- Buy GPU and install CUDA
- Install Caffe and its GUI wrapper Digit
- Install Boinc (This will not help you in Deep Learning, but would let other researchers use your GPU in its idle time, for Science)
5. Digit provides few algorithms such as - Lenet for character recognition and Googlenet for image classification algorithms. You need to download dataset for Lenet and dataset for Googlenet to run these algorithms. You may modify the algorithms and try other fun visual image recognition tasks, like we did here.
6. For various Natural Language Processing (NLP) tasks, RNNs (Recurrent Neural Networks) are really the best. The best place to learn about RNNs is the Stanford lecture videos here. You can download Tensorflow and use it for building RNNs.
7. Now go ahead and choose a Deep Learning problem ranging from facial detection to speech recognition to a self-driving car, and solve it.
If you are through with all the above steps - Congratulations! Go ahead and apply for a position at Google, Baidu, Microsoft, Facebook or Amazon. Not many are able to achieve, what you just did. But, if you want to engage in cutting edge innovation with Deep Learning and work with us, please do connect.
We would try our best to answer your doubts and questions related to Deep Learning. Please do write to us at info@silversparro.com.
关于我们的工作最常被问到的一个问题就是-“我该如何开始深度学习呢?”现在网上已经有很多的免费教程以及学习指南作为学习资源,但是它们对于一个毫无经验的学者来说还是太具挑战性。我们将在下方列出一部分收藏的资源,它或许能够帮助你从零开始对深度学习的探险之旅。
1.第一步就是理解机器学习,最好的资源是吴恩达在coursera的机器学习在线课程(Andrew Ngs (Ex-Google, Stanford, Baidu), an online course at coursera)将课程整体过一遍足够你理解基础知识,但是课程任务能够让你在另一个层次上进行知识理解。
2.接下来就是开发你自己的神经网络。所以大胆向前尝试吧,写下你的第一个神经网络(first Neural Network ),并且尽情享受乐趣。
3.理解神经网络是非常重要的,但是简单的神经网络却不足以解决那些最有趣的实际问题。而变化的卷积神经网络在视觉任务的处理上表现非常出色。斯坦福大学的教程笔记和PPT都在这里提供大家参考:CS231n Convolutional Neural Networks for Visual Recognition(notes), and CS231n: Convolutional Neural Networks for Visual Recognition (lecture slides)。
4.下一步就是根据之前做的工作,在自己电脑上运行你首个CNN网络。
· 安装Boinc(这或许不能再深度学习方面对你产生帮助,但是能够让其他的研究者在空闲时间使用你的GPU)
5.Digit为你提供了一些算法,诸如-用于字符识别的Lenet,用于图像分类算法的GoogleNet.你需要下载Lenet的数据集和GoogleNet的数据集来运行这些算法。你也可以修改这些算法,并且尝试其他有趣的图片识别任务,像我们在这儿做的(here)。
6.针对很多自然语言处理(NLP)任务,RNNs(回馈神经网络)是最好的解决办法。而学习RNNs的最好方法是斯坦福的课程讲义视频(Stanford lecture videos here)。你可以下载Tensorflow并且用它来建立RNNs。
7.到了现在,你可以继续向前进并且选择一个深度学习问题,从人脸检测到自动驾驶的语音识别,并且尝试去解决这些问题。
如果你已经将以上的步骤完成,那么恭喜你!继续做下去并且申请一个谷歌、百度、微软、脸书、或是亚马逊的职位试试看吧。并不是所有人都能够达到,你之前所做的这些任务目标。但是,如果你还想做一些前沿的深度学习创新研究工作,那么请大方的联系我们吧。
我们可以竭尽所能回答你关于深度学习的疑惑和问题,请给我们的邮箱发送信件吧(info@silversparro.com)。
以上是关于成为深度学习专家的七个步骤的主要内容,如果未能解决你的问题,请参考以下文章