Redis设计与实现3 哈希对象( ziplist /hashtable)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis设计与实现3 哈希对象( ziplist /hashtable)相关的知识,希望对你有一定的参考价值。
参考技术Aziplist 编码的哈希对象使用压缩列表作为底层实现, 每当有新的键值对要加入到哈希对象时, 程序会先将保存了键的压缩列表节点推入到压缩列表表尾, 然后再将保存了值的压缩列表节点推入到压缩列表表尾, 因此:
保存了同一键值对的两个节点总是紧挨在一起, 保存键的节点在前, 保存值的节点在后;
先添加到哈希对象中的键值对会被放在压缩列表的表头方向, 而后来添加到哈希对象中的键值对会被放在压缩列表的表尾方向。
举个例子, 如果我们执行以下 HSET 命令, 那么服务器将创建一个列表对象作为 profile 键的值:
另一方面, hashtable 编码的哈希对象使用字典作为底层实现, 哈希对象中的每个键值对都使用一个字典键值对来保存:
Redis 的字典使用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对。
Redis 字典所使用的哈希表由 dict.h/dictht 结构定义:
table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。
size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。
sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。
图 4-1 展示了一个大小为 4 的空哈希表 (没有包含任何键值对)。
哈希表节点使用 dictEntry 结构表示, 每个 dictEntry 结构都保存着一个键值对:
key 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。
next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。
举个例子, 图 4-2 就展示了如何通过 next 指针, 将两个索引值相同的键 k1 和 k0 连接在一起。
Redis 中的字典由 dict.h/dict 结构表示:
type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的:
ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。
除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。
图 4-3 展示了一个普通状态下(没有进行 rehash)的字典:
在Redis中,由于它对实时性要求更高,因此使用了渐进式rehash
当有新键值对添加到Redis字典时,有可能会触发rehash。Redis中处理哈希碰撞的方法与Java一样,都是采用链表法,整个哈希表的性能则依赖于它的大小size和它已经保存节点数量used的比率。
比率在1:1时,哈希表的性能最好,如果节点数量比哈希表大小大很多的话,则整个哈希表就退化成多个链表,其性能优势全无。
上图的哈希表,平均每次失败查找需要访问5个节点。为了保持高效性能,在不修改键值对情况下,
需要进行rehash,目标是将ratio比率维持在1:1左右。
Ratio = Used / Size
rehash触发条件:
rehash执行过程:
Redis哈希为了避免整个rehash过程中服务被阻塞,采用了渐进式的rehash,即rehash程序激活后,并不是
马上执行直到完成,而是分多次,渐进式(incremental)的完成。同时,为了保证并发安全,在执行rehash
中间执行添加时,新的节点会直接添加到ht[1]而不是ht[0], 这样保证了数据的完整性与安全性。
另一方面,哈希的Rehash在还提供了创新的(相对于Java HashMap)收缩(shrink)字典,当可用节点远远
大于已用节点的时候,rehash会自动进行收缩,具体过程与上面类似以保证比率始终高效使用。
当哈希对象可以同时满足以下两个条件时, 哈希对象使用 ziplist 编码:
《闲扯Redis七》Redis字典结构的底层实现
一、前言
上节《闲扯Redis六》Redis五种数据类型之Hash型 中说到 Hash(哈希对象)的底层实现有:
1、ziplist 编码的哈希对象使用压缩列表作为底层实现 2、hashtable 编码的哈希对象使用字典作为底层实现
那么第二种方式中的字典究竟是怎样的一种结构呢?
字典, 又称符号表(symbol table)、关联数组(associative array)或者映射(map), 是一种用于保存键值对(key-value pair)的抽象数据结构。在字典中, 一个键(key)可以和一个值(value)进行关联(或者说将键映射为值), 这些关联的键和值就被称为键值对。
字典中的每个键都是独一无二的, 程序可以在字典中根据键查找与之关联的值, 或者通过键来更新值, 又或者根据键来删除整个键值对等。
二、实现分析
Redis 的字典采用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对。所以咱们依次来分析一下哈希表、哈希表节点、以及字典的结构。
1.哈希表结构
哈希表结构定义 (dict.h/dictht):
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
描述:
1. table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。
2. size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。
3. sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。
结构图解:一个空的哈希表
2.哈希表节点
一个哈希表里面可以有多个哈希表节点,那么每个哈希表节点的结构以及多个哈希表节点之间的存储关系是怎么样的呢?
哈希表节点结构定义 (dictEntry):
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
描述:
1. key 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。
2. next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。
结构图解:多个哈希值相同的键值对存储结构,解决键冲突
3.字典结构实现
字典结构定义 (dict.h/dict):
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
} dict;
描述:
1. type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的
2. type 属性是一个指向 dictType 结构的指针, 每个 dictType 结构保存了一簇用于操作特定类型键值对的函数, Redis 会为用途不同的字典设置不同的类型特定函数。
3. privdata 属性则保存了需要传给那些类型特定函数的可选参数。
typedef struct dictType {
// 计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
// 复制键的函数
void *(*keyDup)(void *privdata, const void *key);
// 复制值的函数
void *(*valDup)(void *privdata, const void *obj);
// 对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
// 销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
// 销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;
ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。
除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx :它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。
结构图解:普通状态下(没有进行 rehash)的字典
三、哈希表分析
1.哈希算法
当要将一个新的键值对添加到字典里面时, 程序需要先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。
Redis 计算哈希值和索引值的方法如下:
# 使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);
# 使用哈希表的 sizemask 属性和哈希值,计算出索引值
# 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;
举个例子, 对于图 4-4 所示的字典来说, 如果我们要将一个键值对 k0 和 v0 添加到字典里面, 那么程序会先使用语句:
hash = dict->type->hashFunction(k0);
计算键 k0 的哈希值。
假设计算得出的哈希值为 8 , 那么程序会继续使用语句:
index = hash & dict->ht[0].sizemask = 8 & 3 = 0;
计算出键 k0 的索引值 0 , 这表示包含键值对 k0 和 v0 的节点应该被放置到哈希表数组的索引 0 位置上。
结构图解:图 4-5
2.键冲突解决
当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时, 我们称这些键发生了冲突(collision)。
举个例子, 假设程序要将键值对 k2 和 v2 添加到图 4-6 所示的哈希表里面, 并且计算得出 k2 的索引值为 2 , 那么键 k1 和 k2 将产生冲突, 而解决冲突的办法就是使用 next 指针将键 k2 和 k1 所在的节点连接起来。
结构图解:图 4-7
因为 dictEntry 节点组成的链表没有指向链表表尾的指针, 所以为了速度考虑, 程序总是将新节点添加到链表的表头位置(复杂度为 O(1)), 排在其他已有节点的前面。
四、要点总结
1. 字典 ht 属性是包含两个哈希表项的数组,一般情况下, 字典只使用 ht[0], ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash (下节分析) 时使用
3. 键值对添加到字典的过程, 先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上面
-END-
以上是关于Redis设计与实现3 哈希对象( ziplist /hashtable)的主要内容,如果未能解决你的问题,请参考以下文章