python数据类型的区别

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python数据类型的区别相关的知识,希望对你有一定的参考价值。

python数据类型的区别set集合和dict字典的区别(推荐学习:Python视频教程)唯一区别: set没有对应的value值两者都是可变类型,即不可哈

python数据类型的区别set集合和dict字典的区别(推荐学习:Python视频教程)
唯一区别: set没有对应的value值
两者都是可变类型,即不可哈希
两者的内部元素是不可变类型,即可哈希
都无索引,不可进行切片和根据索引进行的操作
set集合和pst列表的区别
相同点
– 都是可变类型
不同点
– set集合是无序且元素唯一
– set集合取得元素只能for循环,否则因为是无序的,无索引
– pst列表是有序且元素不唯一,可以根据索引进行切片
– pst列表是分离式结构的动态顺序表(是有索引的原因)
– set集合主要用于测试数据和数据的交、并、差等此类型的和去重操作
– set集合本质区别和dict字典相同
pst列表和dict字典的区别
相同点:
可变类型
可迭代
不同点:
dict字典的key必须是不可变对象
dict字典需要的存储空间大于pst列表
查询效率字典远高于列表
tuple元组和pst列表的区别
不同点:
tuple对象创建后就不可变
创建对象的方式:pst = [“元素”] tuple=(“元素”,)
相同点:
可迭代
tuple元组、字符串、数字
不可变类型(可哈希),不可以进行更改元素
元组可以包含可变类型
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据类型的区别的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
参考技术A set集合和dict字典的区别
set没有对应的value值,两者都是可变类型,即不可哈希;两者的内部元素是不可变类型,即可哈希,都无索引,不可进行切片和根据索引进行的操作。
set集合和list列表的区别
相同点
都是可变类型
不同点
set集合是无序且元素唯一
set集合取得元素只能for循环,否则因为是无序的,无索引
list列表是有序且元素不唯一,可以根据索引进行切片
list列表是分离式结构的动态顺序表
set集合主要用于测试数据和数据的交、并、差等此类型的和去重操作
set集合本质区别和dict字典相同
list列表和dict字典的区别
相同点
可变类型、可迭代
不同点
dict字典的key必须是不可变对象
dict字典需要的存储空间大于list列表
查询效率字典远高于列表
tuple元组和list列表的区别
不同点
tuple对象创建后就不可变
创建对象的方式:list = [“元素”] tuple=(“元素”,)
相同点
可迭代
tuple元组、字符串、数字
不可变类型,可哈希;不可以进行更改元素
元组可以包含可变类型

Python中内置数据类型list,tuple,dict,set的区别和用法

文章来源:http://www.jb51.net/article/76339.htm

 

Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。

List

字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:

1
L = [12, ‘China‘, 19.998]

可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:

1
L = []

Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:

1
2
>>> print L[0]
12

千万不要越界,否则会报错

1
2
3
4
>>> print L[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:

1
2
3
>>> L = [12, ‘China‘, 19.998]
>>> print L[-1]
19.998

-4的话显然就越界了

1
2
3
4
5
6
7
>>> print L[-4]
 
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  print L[-4]
IndexError: list index out of range
>>>

List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):

1
2
3
4
5
6
7
8
>>> L = [12, ‘China‘, 19.998]
>>> L.append(‘Jack‘)
>>> print L
[12, ‘China‘, 19.998, ‘Jack‘]
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, ‘China‘, 19.998, ‘Jack‘]
>>>

通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:

1
2
3
4
5
6
7
8
>>> L.pop()
‘Jack‘
>>> print L
[12, 3.14, ‘China‘, 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, ‘China‘, 19.998]

也可以通过下标进行复制替换

1
2
3
>>> L[1] = ‘America‘
>>> print L
[3.14, ‘America‘, 19.998]

Tuple

Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:

1
2
3
>>> t = (3.14, ‘China‘, ‘Jason‘)
>>> print t
(3.14, ‘China‘, ‘Jason‘)

但是不能重新赋值替换:

1
2
3
4
5
6
>>> t[1] = ‘America‘
 
Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
  t[1] = ‘America‘
TypeError: ‘tuple‘ object does not support item assignment

也没有pop和insert、append方法。

可以创建空元素的tuple:

t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):

t = (3.14,)

那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:

1
2
3
4
5
6
7
8
>>> t = (3.14, ‘China‘, ‘Jason‘, [‘A‘, ‘B‘])
>>> print t
(3.14, ‘China‘, ‘Jason‘, [‘A‘, ‘B‘])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, ‘China‘, ‘Jason‘, [122, 233])

这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。

Dict

Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:

1
2
3
4
5
6
7
8
>>> d = {
  ‘Adam‘: 95,
  ‘Lisa‘: 85,
  ‘Bart‘: 59,
  ‘Paul‘: 75
}
>>> print d
{‘Lisa‘: 85, ‘Paul‘: 75, ‘Adam‘: 95, ‘Bart‘: 59}

可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):

>>> len(d)
4

可以直接通过键值对方式添加dict中的元素:

1
2
3
4
5
6
>>> print d
{‘Lisa‘: 85, ‘Paul‘: 75, ‘Adam‘: 95, ‘Bart‘: 59}
>>> d[‘Jone‘] = 99
>>> print d
{‘Lisa‘: 85, ‘Paul‘: 75, ‘Adam‘: 95, ‘Jone‘: 99, ‘Bart‘: 59}

List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)

1
2
>>> print d[‘Adam‘]
95

如果Key不存在,会报错:

1
2
3
4
5
6
>>> print d[‘Jack‘]
 
Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
  print d[‘Jack‘]
KeyError: ‘Jack‘

所以访问之前最好先查询下key是否存在:

1
2
3
>>> if ‘Adam‘ in d : print ‘exist key‘
 
exist key

或者直接用保险的get方法:

1
2
3
4
>>> print d.get(‘Adam‘)
95
>>> print d.get(‘Jason‘)
None

至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:

1
2
3
4
5
6
>>> for key in d : print key, ‘:‘, d.get(key)
 
Lisa : 85
Paul : 75
Adam : 95
Bart : 59

Dict具有一些特点:

查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:

1
2
3
4
5
>>> print d
{‘Lisa‘: 85, ‘Paul‘: 75, ‘Adam‘: 95, ‘Jone‘: 99, ‘Bart‘: 59}
>>> d[‘NewList‘] = [12, 23, ‘Jack‘]
>>> print d
{‘Bart‘: 59, ‘NewList‘: [12, 23, ‘Jack‘], ‘Adam‘: 95, ‘Jone‘: 99, ‘Lisa‘: 85, ‘Paul‘: 75}

Key不可重复。(下面例子中添加了一个‘Jone‘:0,但是实际上原来已经有‘Jone‘这个Key了,所以仅仅是改了原来的value)

1
2
3
4
5
>>> print d
{‘Bart‘: 59, ‘NewList‘: [12, 23, ‘Jack‘], ‘Adam‘: 95, ‘Jone‘: 99, ‘Lisa‘: 85, ‘Paul‘: 75}
>>> d[‘Jone‘] = 0
>>> print d
{‘Bart‘: 59, ‘NewList‘: [12, 23, ‘Jack‘], ‘Adam‘: 95, ‘Jone‘: 0, ‘Lisa‘: 85, ‘Paul‘: 75}

Dict的合并,如何将两个Dict合并为一个,可以用dict函数:

1
2
3
4
5
>>> d1 = {‘mike‘:12, ‘jack‘:19}
>>> d2 = {‘jone‘:22, ‘ivy‘:17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{‘mike‘: 12, ‘jack‘: 19, ‘jone‘: 22, ‘ivy‘: 17}

或者

1
2
3
>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{‘mike‘: 12, ‘jack‘: 19, ‘jone‘: 22, ‘ivy‘: 17}

方法2比方法1速度快很多,方法2等同于:

1
2
3
4
>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{‘mike‘: 12, ‘jack‘: 19, ‘jone‘: 22, ‘ivy‘: 17}

set

set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:

>>> s = set([‘A‘, ‘B‘, ‘C‘])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。

对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:

1
2
3
4
>>> print ‘A‘ in s
True
>>> print ‘D‘ in s
False

大小写是敏感的。

也通过for来遍历:

1
2
3
4
5
6
7
8
9
s = set([(‘Adam‘, 95), (‘Lisa‘, 85), (‘Bart‘, 59)])
#tuple
for x in s:
  print x[0],‘:‘,x[1]
 
>>>
Lisa : 85
Adam : 95
Bart : 59

通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:

1
2
3
4
>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])

如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:

1
2
3
4
>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])

删除set中的元素时,用set的remove()方法:

1
2
3
4
>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])

如果删除的元素不存在set中,remove()会报错:

1
2
3
4
5
>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 4

所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
months = set([‘Jan‘,‘Feb‘,‘Mar‘,‘Apr‘,‘May‘,‘Jun‘,‘Jul‘,‘Aug‘,‘Sep‘,‘Oct‘,‘Nov‘,‘Dec‘,])
x1 = ‘Feb‘
x2 = ‘Sun‘
 
if x1 in months:
  print ‘x1: ok‘
else:
  print ‘x1: error‘
 
if x2 in months:
  print ‘x2: ok‘
else:
  print ‘x2: error‘
 
>>>
x1: ok
x2: error





以上是关于python数据类型的区别的主要内容,如果未能解决你的问题,请参考以下文章

Python 面试高频问题:可变数据类型和不可变数据类型的区别

Python 面试高频问题:可变数据类型和不可变数据类型的区别

python基本数据类型的用法和区别

Python中内置数据类型list,tuple,dict,set的区别和用法

Python中内置数据类型list,tuple,dict,set的区别和用法

Python中内置数据类型list,tuple,dict,set的区别和用法