pytorch输出与target维度不同

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch输出与target维度不同相关的知识,希望对你有一定的参考价值。

参考技术A 这种情况可能是由于输入数据的维度不一致造成的。在进行模型训练之前,应该先检查输入数据的维度是否一致,如果不一致,可以使用reshape函数将其调整为相同的维度。

pytorch 数据维度变换

view、reshape

  1. 两者功能一样:将数据依次展开后,再变形
  2. 变形后的数据量与变形前数据量必须相等。即满足维度:ab...f = xy...z
  3. reshape是pytorch根据numpy中的reshape来的
import torch
a = torch.rand(2, 3, 2, 3)
a
# 输出:
    tensor([[[[0.4850, 0.0073, 0.8941],
              [0.0208, 0.4396, 0.7841]],

             [[0.0553, 0.3554, 0.0726],
              [0.9669, 0.3918, 0.9356]],

             [[0.6169, 0.2080, 0.1028],
              [0.5816, 0.3509, 0.6983]]],


            [[[0.7545, 0.8693, 0.4751],
              [0.2206, 0.3384, 0.2877]],

             [[0.9521, 0.6172, 0.5058],
              [0.6835, 0.0624, 0.6261]],

             [[0.7752, 0.3820, 0.5585],
              [0.1547, 0.1420, 0.6051]]]])

# 将数据依次展开后,再变形为对应维度。所以,数据的顺序是一样的。且总的数据维度是不变的。
a.view(4, 9)  
# 输出:
    tensor([[0.4850, 0.0073, 0.8941, 0.0208, 0.4396, 0.7841, 0.0553, 0.3554, 0.0726],
            [0.9669, 0.3918, 0.9356, 0.6169, 0.2080, 0.1028, 0.5816, 0.3509, 0.6983],
            [0.7545, 0.8693, 0.4751, 0.2206, 0.3384, 0.2877, 0.9521, 0.6172, 0.5058],
            [0.6835, 0.0624, 0.6261, 0.7752, 0.3820, 0.5585, 0.1547, 0.1420, 0.6051]])

# reshape和view的效果一样    
a.reshape(4, 9)  
# 输出:
    tensor([[0.4850, 0.0073, 0.8941, 0.0208, 0.4396, 0.7841, 0.0553, 0.3554, 0.0726],
            [0.9669, 0.3918, 0.9356, 0.6169, 0.2080, 0.1028, 0.5816, 0.3509, 0.6983],
            [0.7545, 0.8693, 0.4751, 0.2206, 0.3384, 0.2877, 0.9521, 0.6172, 0.5058],
            [0.6835, 0.0624, 0.6261, 0.7752, 0.3820, 0.5585, 0.1547, 0.1420, 0.6051]])

# 变成其他形状后,如果记得原数据形状,可以变形回去
a.view(4, 9).view(2, 3, 2, 3)
# 输出:
tensor([[[[0.4850, 0.0073, 0.8941],
          [0.0208, 0.4396, 0.7841]],

         [[0.0553, 0.3554, 0.0726],
          [0.9669, 0.3918, 0.9356]],

         [[0.6169, 0.2080, 0.1028],
          [0.5816, 0.3509, 0.6983]]],


        [[[0.7545, 0.8693, 0.4751],
          [0.2206, 0.3384, 0.2877]],

         [[0.9521, 0.6172, 0.5058],
          [0.6835, 0.0624, 0.6261]],

         [[0.7752, 0.3820, 0.5585],
          [0.1547, 0.1420, 0.6051]]]])

unsqueeze

  1. 功能:指定维度,为其增加(插入)1个维度
  2. 必须给定维度数据,不然会报错
a = torch.rand(2, 3)
a
# 输出:
    tensor([[0.3074, 0.2152, 0.0082],
            [0.2831, 0.9236, 0.2705]])
    
# 在0维处,增加1个维度。
a.unsqueeze(0)
# 支持负数索引,等价于 a.unsqueeze(-3)
# 输出:
    tensor([[[0.3074, 0.2152, 0.0082],
             [0.2831, 0.9236, 0.2705]]])

a.unsqueeze(1)
# 等价于a.unsqueeze(-2)
# 输出:
    tensor([[[0.3074, 0.2152, 0.0082]],
            [[0.2831, 0.9236, 0.2705]]])

a.unsqueeze(2) 
# 等价于a.unsqueeze(-1)
# 输出:
    tensor([[[0.3074],
             [0.2152],
             [0.0082]],

            [[0.2831],
             [0.9236],
             [0.2705]]])

a.unsqueeze(0).unsqueeze(-1)  # 分别在0和最后维度上面都增加了一个维度,相比上面的数据,外层多了一对[]括号
# 输出:
    tensor([[[[0.3074],
              [0.2152],
              [0.0082]],

             [[0.2831],
              [0.9236],
              [0.2705]]]])

squeeze 删除为1的维度

  1. 默认将所有为1的维度
  2. 传入指定维度,删除指定维度为1的维度
a = torch.rand(2, 1, 3, 1, 2, 1)
a
# 输出:
    tensor([[[[[[0.4492],
                [0.6223]]],

              [[[0.8522],
                [0.4971]]],

              [[[0.2585],
                [0.6034]]]]],


            [[[[[0.1904],
                [0.5564]]],

              [[[0.3120],
                [0.2698]]],

              [[[0.6620],
                [0.5963]]]]]])

a.squeeze()  # 默认删除所有为1的维度,即(2, 1, 3, 1, 2, 1)删除后得到(2, 3, 2)
a
# 输出:
    tensor([[[0.4492, 0.6223],
             [0.8522, 0.4971],
             [0.2585, 0.6034]],

            [[0.1904, 0.5564],
             [0.3120, 0.2698],
             [0.6620, 0.5963]]])

a.squeeze(1).squeeze(2).squeeze(3)  # 通过指定维度删除1,与上面效果相同
a
# 输出:
    tensor([[[0.4492, 0.6223],
             [0.8522, 0.4971],
             [0.2585, 0.6034]],

            [[0.1904, 0.5564],
             [0.3120, 0.2698],
             [0.6620, 0.5963]]])

expand

  1. 功能:扩展维度到指定维度。扩展的数据是复制当前维度的数据。
  2. 只有只有维度大小为1的维度可以扩展
  3. -1表示保持原维度
a = torch.rand(2, 3, 1)
a
# 输出:
    tensor([[[0.1162],
             [0.6026],
             [0.5674]],

            [[0.7272],
             [0.4351],
             [0.1708]]])

# 扩展数据,只有维度为1的地方可以被扩展
a.expand(2, -1, 3)
# 输出:
    tensor([[[0.1162, 0.1162, 0.1162],
             [0.6026, 0.6026, 0.6026],
             [0.5674, 0.5674, 0.5674]],

            [[0.7272, 0.7272, 0.7272],
             [0.4351, 0.4351, 0.4351],
             [0.1708, 0.1708, 0.1708]]])

repeat

  1. 表示扩展数据到原维度的倍数。
  2. 1表示保持原维度。
  3. 不建议使用此方法,因为复制数据会重新申请内存空间,比较占内存
a
# 输出:
    tensor([[[0.1162],
             [0.6026],
             [0.5674]],

            [[0.7272],
             [0.4351],
             [0.1708]]])

a.repeat(1, 1, 3)
# 输出:
    tensor([[[0.1655, 0.1655, 0.1655],
             [0.2952, 0.2952, 0.2952],
             [0.8438, 0.8438, 0.8438]],

            [[0.0215, 0.0215, 0.0215],
             [0.0677, 0.0677, 0.0677],
             [0.6002, 0.6002, 0.6002]]])

矩阵转置

  1. 行列互换
  2. .t()只支持2D的数据
a = torch.rand(5, 2)
a
# 输出:
    tensor([[0.9841, 0.2180],
            [0.5082, 0.8553],
            [0.5250, 0.7228],
            [0.9064, 0.0074],
            [0.2752, 0.3939]])

a.t()
# 输出:
    tensor([[0.9841, 0.5082, 0.5250, 0.9064, 0.2752],
            [0.2180, 0.8553, 0.7228, 0.0074, 0.3939]])

transpose维度交换

  1. 相当于被选择的两个维度数据进行转置,即:行列互换
  2. 也可以理解为,每一行数据顺时针旋转90度为一列后,依次拼接在右边(最后面)
a = torch.rand(2, 3, 4)
a
# 输出:
    tensor([[[0.1696, 0.6733, 0.7269, 0.1066],
             [0.5433, 0.2820, 0.0214, 0.9471],
             [0.6922, 0.8220, 0.8422, 0.8682]],

            [[0.6121, 0.8133, 0.6502, 0.4529],
             [0.9810, 0.9233, 0.5279, 0.2193],
             [0.1775, 0.8487, 0.4938, 0.3994]]])

a.transpose(0, 2)  
# 输出:
    tensor([[[0.1696, 0.6121],
             [0.5433, 0.9810],
             [0.6922, 0.1775]],

            [[0.6733, 0.8133],
             [0.2820, 0.9233],
             [0.8220, 0.8487]],

            [[0.7269, 0.6502],
             [0.0214, 0.5279],
             [0.8422, 0.4938]],

            [[0.1066, 0.4529],
             [0.9471, 0.2193],
             [0.8682, 0.3994]]])

a.transpose(0, 2).contiguous().view(4, 6)
# 输出:
    tensor([[0.1696, 0.6121, 0.5433, 0.9810, 0.6922, 0.1775],
            [0.6733, 0.8133, 0.2820, 0.9233, 0.8220, 0.8487],
            [0.7269, 0.6502, 0.0214, 0.5279, 0.8422, 0.4938],
            [0.1066, 0.4529, 0.9471, 0.2193, 0.8682, 0.3994]])

permute

与transpose不同的是:

  1. transpose一次只能进行两个维度之间的交换
  2. permute可以一次进行多个维度的交换。其实质就是实现多个transpose步骤。
  3. 给定维度索引。
a = torch.rand(2, 3, 4)
a
# 输出:
    tensor([[[0.7855, 0.6239, 0.3785, 0.8138],
             [0.9595, 0.5210, 0.3816, 0.1612],
             [0.0152, 0.9714, 0.4245, 0.4754]],

            [[0.1475, 0.4961, 0.0812, 0.3769],
             [0.4279, 0.0595, 0.0717, 0.9871],
             [0.9480, 0.3525, 0.3076, 0.0367]]])

a.permute(1, 2, 0)
# 输出:
    tensor([[[0.7855, 0.1475],
             [0.6239, 0.4961],
             [0.3785, 0.0812],
             [0.8138, 0.3769]],

            [[0.9595, 0.4279],
             [0.5210, 0.0595],
             [0.3816, 0.0717],
             [0.1612, 0.9871]],

            [[0.0152, 0.9480],
             [0.9714, 0.3525],
             [0.4245, 0.3076],
             [0.4754, 0.0367]]])    

# 通过2次transpose可以实现permute的效果    
a.transpose(0, 1).transpose(1, 2)  
# 输出:
    tensor([[[0.7855, 0.1475],
             [0.6239, 0.4961],
             [0.3785, 0.0812],
             [0.8138, 0.3769]],

            [[0.9595, 0.4279],
             [0.5210, 0.0595],
             [0.3816, 0.0717],
             [0.1612, 0.9871]],

            [[0.0152, 0.9480],
             [0.9714, 0.3525],
             [0.4245, 0.3076],
             [0.4754, 0.0367]]])

broadcast广播(自动扩展):

  1. 定义:两个维度不同的数据相加,会自动将维度小的数据扩张到与大维度相同的维度
  2. 特点:自动扩展维度,并且不用复制数据,节省空间
  3. 前提:小维度的数据,要么不给定维度,要么给定1维,要么与原数据维度大小相同的维度,否则会报错。
a = torch.rand(3, 4, 2)
a
# 输出:
    tensor([[[0.7220, 0.7834],
             [0.4305, 0.6128],
             [0.6032, 0.5751],
             [0.2304, 0.3003]],

            [[0.1044, 0.1071],
             [0.1373, 0.4874],
             [0.3963, 0.5231],
             [0.1851, 0.8962]],

            [[0.0677, 0.0587],
             [0.7268, 0.8807],
             [0.5445, 0.2110],
             [0.8755, 0.8577]]])

b = torch.rand(1, 4, 2)  # b的第一维度为1,a的为3
b
# 输出:
tensor([[[0.6676, 0.5702],
         [0.3334, 0.8553],
         [0.5392, 0.0754],
         [0.9488, 0.7814]]])

# 相加和,b被自动广播为3,然后再与a相加,得到结果
a + b
# 输出:
    tensor([[[1.0925, 1.1274],
             [0.7881, 1.6091],
             [0.6568, 0.8419],
             [1.8460, 1.7360]],

            [[0.9783, 0.9697],
             [1.0127, 1.3521],
             [0.7147, 0.3189],
             [1.3435, 1.3845]],

            [[0.8699, 1.0997],
             [0.5712, 1.8381],
             [0.6607, 1.0689],
             [0.9599, 1.7686]]])

技术图片
技术图片


以上是关于pytorch输出与target维度不同的主要内容,如果未能解决你的问题,请参考以下文章

Pytorch 闪电指标:ValueError:preds 和 target 必须具有相同数量的维度,或者 preds 的一个额外维度

pytorch 数据维度变换

pytorch 数据维度变换

PyTorch 打印模型结构输出维度和参数信息(torchsummary)

pytorch数据拼接与拆分

pytorch源码:Python层